論文の概要: A Review on Quantum Approximate Optimization Algorithm and its Variants
- arxiv url: http://arxiv.org/abs/2306.09198v2
- Date: Mon, 26 Jun 2023 19:41:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 16:28:13.808427
- Title: A Review on Quantum Approximate Optimization Algorithm and its Variants
- Title(参考訳): 量子近似最適化アルゴリズムとその変数に関する一検討
- Authors: Kostas Blekos, Dean Brand, Andrea Ceschini, Chiao-Hui Chou, Rui-Hao
Li, Komal Pandya, and Alessandro Summer
- Abstract要約: 量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
- 参考スコア(独自算出の注目度): 47.89542334125886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising
variational quantum algorithm that aims to solve combinatorial optimization
problems that are classically intractable. This comprehensive review offers an
overview of the current state of QAOA, encompassing its performance analysis in
diverse scenarios, its applicability across various problem instances, and
considerations of hardware-specific challenges such as error susceptibility and
noise resilience. Additionally, we conduct a comparative study of selected QAOA
extensions and variants, while exploring future prospects and directions for
the algorithm. We aim to provide insights into key questions about the
algorithm, such as whether it can outperform classical algorithms and under
what circumstances it should be used. Towards this goal, we offer specific
practical points in a form of a short guide. Keywords: Quantum Approximate
Optimization Algorithm (QAOA), Variational Quantum Algorithms (VQAs), Quantum
Optimization, Combinatorial Optimization Problems, NISQ Algorithms
- Abstract(参考訳): 量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm, QAOA)は、古典的に難解な組合せ最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューでは、QAOAの現状の概要、さまざまなシナリオにおけるパフォーマンス分析、さまざまな問題インスタンスに適用性、エラーの感受性やノイズレジリエンスといったハードウェア固有の課題について概説する。
さらに,選択したQAOA拡張と変種の比較研究を行い,今後のアルゴリズムの展望と方向性について検討する。
本研究の目的は,従来のアルゴリズムより優れているか,どのような状況で使用するべきかといった,アルゴリズムに関する重要な質問に対する洞察を提供することである。
この目標に向けて、我々は特定の実践的なポイントを短いガイドとして提供します。
キーワード:量子近似最適化アルゴリズム(QAOA)、変分量子アルゴリズム(VQA)、量子最適化、組合せ最適化問題、NISQアルゴリズム
関連論文リスト
- Guess What Quantum Computing Can Do for Test Case Optimization [43.89456212504871]
近い将来、量子近似最適化アルゴリズム(QAOAs)は最適化問題を解く大きな可能性を秘めている。
本稿では,QAOA問題としてソフトウェアテストケース最適化問題を定式化し,量子コンピュータシミュレータ上での解法を提案する。
近年は利用できない多くのキュービットを必要とするより大きなテスト最適化問題を解決するため、QAOAと問題分解戦略を統合する。
論文 参考訳(メタデータ) (2023-12-24T21:25:31Z) - Evaluating the Practicality of Quantum Optimization Algorithms for
Prototypical Industrial Applications [44.88678858860675]
本稿では,量子近似最適化アルゴリズム (QAOA) と量子断熱アルゴリズム (QAA) の応用について検討する。
我々は,これらの2つのアルゴリズムの性能を,選択した評価指標を用いて,ソリューションの品質の観点から比較する。
論文 参考訳(メタデータ) (2023-11-20T09:09:55Z) - Benchmarking Metaheuristic-Integrated QAOA against Quantum Annealing [0.0]
この研究は、異なる問題領域にわたる量子アニーリングとメタヒューリスティック統合QAOAの長所と短所に関する洞察を提供する。
その結果,ハイブリッド手法は古典的最適化手法を利用してQAOAの解品質と収束速度を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-09-28T18:55:22Z) - Benchmarking Adaptative Variational Quantum Algorithms on QUBO Instances [0.0]
適応型VQAは、トレーニング中にパラメータの追加、削除、最適化によって回路構造を動的に修正する。
可変量子固有解器(EVQE)、可変アンサッツ(VAns)、ランダム適応-VQE(RA-VQE)の3つの適応的VQAを分析し、ベースラインとして導入するランダムなアプローチを提案する。
我々の分析は、短期量子デバイス用に設計されたAdaptative VQAのベンチマークを設定する。
論文 参考訳(メタデータ) (2023-08-03T14:39:02Z) - An introduction to variational quantum algorithms for combinatorial optimization problems [0.0]
このチュートリアルは変分量子アルゴリズムのクラスに関する数学的記述を提供する。
量子側および古典側におけるこれらのハイブリッドアルゴリズムの重要な側面を正確に紹介する。
我々はQAOAに特に注意を払って、そのアルゴリズムに関わる量子回路と、その可能な誘導関数によって満たされる特性を詳述した。
論文 参考訳(メタデータ) (2022-12-22T14:27:52Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
変分量子固有解法(VQE)に基づくアルゴリズムの評価と改良を行った。
我々は,問題を変分アンサッツにエンコードすることで生じる数値不安定性を強調する。
より少ないイテレーションでアンザッツの基底状態を求めるための古典的な最適化手法を提案する。
論文 参考訳(メタデータ) (2022-10-21T08:54:12Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
雑音は量子回路のバイアスによる目的関数の評価を行う。
我々は、欠落した保証を導き、収束率が影響を受けないことを見出す。
論文 参考訳(メタデータ) (2022-09-21T19:18:41Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。