論文の概要: Machine Learning Operations (MLOps): Overview, Definition, and
Architecture
- arxiv url: http://arxiv.org/abs/2205.02302v1
- Date: Wed, 4 May 2022 19:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-06 14:51:01.996177
- Title: Machine Learning Operations (MLOps): Overview, Definition, and
Architecture
- Title(参考訳): 機械学習オペレーション(MLOps)の概要、定義、アーキテクチャ
- Authors: Dominik Kreuzberger, Niklas K\"uhl, Sebastian Hirschl
- Abstract要約: 機械学習オペレーション(MLOps)のパラダイムは、この問題に対処する。
MLOpsはいまだ曖昧な用語であり、研究者や専門家にとっての結果は曖昧である。
必要なコンポーネントや役割、関連するアーキテクチャや原則をまとめて紹介します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The final goal of all industrial machine learning (ML) projects is to develop
ML products and rapidly bring them into production. However, it is highly
challenging to automate and operationalize ML products and thus many ML
endeavors fail to deliver on their expectations. The paradigm of Machine
Learning Operations (MLOps) addresses this issue. MLOps includes several
aspects, such as best practices, sets of concepts, and development culture.
However, MLOps is still a vague term and its consequences for researchers and
professionals are ambiguous. To address this gap, we conduct mixed-method
research, including a literature review, a tool review, and expert interviews.
As a result of these investigations, we provide an aggregated overview of the
necessary principles, components, and roles, as well as the associated
architecture and workflows. Furthermore, we furnish a definition of MLOps and
highlight open challenges in the field. Finally, this work provides guidance
for ML researchers and practitioners who want to automate and operate their ML
products with a designated set of technologies.
- Abstract(参考訳): すべての産業用機械学習(ML)プロジェクトの最終的な目標は、ML製品を開発し、迅速に製品化することだ。
しかし、MLプロダクトの自動化と運用は極めて難しいため、多くのML取り組みが期待に届かなかった。
機械学習オペレーション(MLOps)のパラダイムは、この問題に対処する。
MLOpsには、ベストプラクティスやコンセプトセット、開発文化など、いくつかの側面が含まれている。
しかし、MLOpsはまだ曖昧な用語であり、研究者や専門家にとっての結果は曖昧である。
このギャップに対処するために,文献レビュー,ツールレビュー,エキスパートインタビューなど,混合手法の研究を行っている。
これらの調査の結果、必要な原則、コンポーネント、役割、関連するアーキテクチャやワークフローの概要をまとめて紹介する。
さらに、MLOpsの定義も提供し、この分野におけるオープンな課題を強調します。
最後に、この研究は、指定された技術セットでML製品を自動化し、運用したい機械学習研究者や実践者に対してガイダンスを提供する。
関連論文リスト
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
近年、AI研究者や実践家は、信頼性と信頼性のある意思決定を行うシステムを構築するための原則とガイドラインを導入している。
実際には、システムが運用され、実際の環境で継続的に進化し、運用するためにデプロイされる必要がある場合に、根本的な課題が発生する。
この課題に対処するため、MLOps(Machine Learning Operations)は、デプロイメントにおけるMLソリューションを標準化するための潜在的なレシピとして登場した。
論文 参考訳(メタデータ) (2024-10-28T09:34:08Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
本調査では,画像,ビデオ,3D,オーディオなど,さまざまな領域にわたるマルチモーダル生成と編集について詳述する。
これらの分野でのマイルストーンの成果を要約し、これらの研究をLLM法とCLIP/T5法に分類する。
我々は、既存の生成モデルを人間とコンピュータの相互作用に活用できるツール強化マルチモーダルエージェントを掘り下げる。
論文 参考訳(メタデータ) (2024-05-29T17:59:20Z) - Identifying Concerns When Specifying Machine Learning-Enabled Systems: A
Perspective-Based Approach [1.2184324428571227]
PerSpecMLは、ML対応システムを指定するためのパースペクティブベースのアプローチである。
MLや非MLコンポーネントを含むどの属性がシステム全体の品質に寄与するかを、実践者が特定するのに役立つ。
論文 参考訳(メタデータ) (2023-09-14T18:31:16Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - MLCopilot: Unleashing the Power of Large Language Models in Solving
Machine Learning Tasks [31.733088105662876]
我々は、新しいフレームワークを導入することで、機械学習と人間の知識のギャップを埋めることを目指している。
本稿では、構造化された入力を理解するためのLLMの能力を拡張し、新しいMLタスクを解くための徹底的な推論を行う可能性を示す。
論文 参考訳(メタデータ) (2023-04-28T17:03:57Z) - MLOps Spanning Whole Machine Learning Life Cycle: A Survey [4.910132890978536]
Google AlphaGosの勝利は、機械学習(ML)の研究と開発を大いに動機付け、加速させた。
本稿では,既存のML技術の現状を包括的調査により明らかにすることを目的としている。
論文 参考訳(メタデータ) (2023-04-13T04:12:38Z) - Reasonable Scale Machine Learning with Open-Source Metaflow [2.637746074346334]
既存のツールを再購入しても、現在の生産性の問題は解決しない、と私たちは主張します。
私たちは、データ実践者の生産性を高めるために明示的に設計された、MLプロジェクトのためのオープンソースのフレームワークであるMetaflowを紹介します。
論文 参考訳(メタデータ) (2023-03-21T11:28:09Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
論文 参考訳(メタデータ) (2021-08-17T17:44:38Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。