論文の概要: MLOps Spanning Whole Machine Learning Life Cycle: A Survey
- arxiv url: http://arxiv.org/abs/2304.07296v1
- Date: Thu, 13 Apr 2023 04:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 19:48:46.568610
- Title: MLOps Spanning Whole Machine Learning Life Cycle: A Survey
- Title(参考訳): 機械学習のライフサイクル全体にわたるmlops:調査
- Authors: Fang Zhengxin, Yuan Yi, Zhang Jingyu, Liu Yue, Mu Yuechen, Lu Qinghua,
Xu Xiwei, Wang Jeff, Wang Chen, Zhang Shuai and Chen Shiping
- Abstract要約: Google AlphaGosの勝利は、機械学習(ML)の研究と開発を大いに動機付け、加速させた。
本稿では,既存のML技術の現状を包括的調査により明らかにすることを目的としている。
- 参考スコア(独自算出の注目度): 4.910132890978536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Google AlphaGos win has significantly motivated and sped up machine learning
(ML) research and development, which led to tremendous ML technical advances
and wider adoptions in various domains (e.g., Finance, Health, Defense, and
Education). These advances have resulted in numerous new concepts and
technologies, which are too many for people to catch up to and even make them
confused, especially for newcomers to the ML area. This paper is aimed to
present a clear picture of the state-of-the-art of the existing ML technologies
with a comprehensive survey. We lay out this survey by viewing ML as a MLOps
(ML Operations) process, where the key concepts and activities are collected
and elaborated with representative works and surveys. We hope that this paper
can serve as a quick reference manual (a survey of surveys) for newcomers
(e.g., researchers, practitioners) of ML to get an overview of the MLOps
process, as well as a good understanding of the key technologies used in each
step of the ML process, and know where to find more details.
- Abstract(参考訳): Google AlphaGosの勝利は、機械学習(ML)の研究と開発を大いに動機付け、加速させ、MLの技術進歩とさまざまな領域(財務、健康、防衛、教育など)での広範な採用につながった。
これらの進歩により、多くの新しい概念や技術が生まれ、特にML分野への新規参入者にとって、人々が追いつき、混乱させるにはあまりにも多すぎる。
本稿では,既存のML技術の現状を包括的調査により明らかにすることを目的としている。
MLOps(ML Options)プロセスとしてMLを見て、この調査をレイアウトし、主要な概念と活動を収集し、代表的な作業や調査を精査する。
本論文は,mlの新参者(研究者,実践者など)を対象としたクイックリファレンスマニュアル(調査調査)として機能し,mlopsプロセスの概要や,mlプロセスの各ステップで使用される重要なテクノロジの理解を深めて,より詳細な情報を得るための場所を把握できることを願っている。
関連論文リスト
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
近年、AI研究者や実践家は、信頼性と信頼性のある意思決定を行うシステムを構築するための原則とガイドラインを導入している。
実際には、システムが運用され、実際の環境で継続的に進化し、運用するためにデプロイされる必要がある場合に、根本的な課題が発生する。
この課題に対処するため、MLOps(Machine Learning Operations)は、デプロイメントにおけるMLソリューションを標準化するための潜在的なレシピとして登場した。
論文 参考訳(メタデータ) (2024-10-28T09:34:08Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Machine learning in business process management: A systematic literature review [0.0]
機械学習(ML)は、明示的にプログラムすることなく、データに基づいてコンピュータプログラムを作成するアルゴリズムを提供する。
MLを使用する3つの頻繁な例は、予測による意思決定のサポート、正確なプロセスモデルの検出、リソース割り当ての改善である。
この研究は、BPMでMLがどのように使われているかについて、初めての徹底的なレビューである。
論文 参考訳(メタデータ) (2024-05-26T01:12:24Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
MLLM(Multimodal Large Language Models)は、視覚的質問応答、視覚的理解、推論などのタスクにおいて顕著な性能を示す。
モデルサイズと高いトレーニングと推論コストが、MLLMのアカデミックや産業への応用を妨げている。
本調査は,効率的なMLLMの現状を包括的かつ体系的に概観するものである。
論文 参考訳(メタデータ) (2024-05-17T12:37:10Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
本論文は、最先端技術と、実世界の操作タスクに適用された機械学習手法の最近の動向についてレビューする。
論文の残りの部分は、産業、医療、農業、宇宙、軍事、捜索救助など、さまざまな分野におけるML応用に費やされている。
論文 参考訳(メタデータ) (2023-09-22T01:06:32Z) - A Machine Learning-oriented Survey on Tiny Machine Learning [9.690117347832722]
Tiny Machine Learning(TinyML)の出現は、人工知能の分野に積極的に革命をもたらした。
TinyMLは、社会、経済、個人が効果的なAI融合コンピューティング技術を採用するのを助けるために、第4および第5次産業革命において不可欠な役割を担っている。
論文 参考訳(メタデータ) (2023-09-21T09:47:12Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - Machine Learning Operations (MLOps): Overview, Definition, and
Architecture [0.0]
機械学習オペレーション(MLOps)のパラダイムは、この問題に対処する。
MLOpsはいまだ曖昧な用語であり、研究者や専門家にとっての結果は曖昧である。
必要なコンポーネントや役割、関連するアーキテクチャや原則をまとめて紹介します。
論文 参考訳(メタデータ) (2022-05-04T19:38:48Z) - Declarative Machine Learning Systems [7.5717114708721045]
機械学習(ML)は、学術的な取り組みから、コンピューティングのほぼすべての側面で採用されている普及した技術へと移行してきた。
近年の自然科学におけるMLの適用の成功により、MLは人類が直面する最も困難な現実世界問題に対処するために利用できることが明らかとなった。
MLシステムの次の波は、おそらくコーディングスキルなしで、より多くの人が同じタスクを実行できると信じています。
論文 参考訳(メタデータ) (2021-07-16T23:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。