Exploring the Benefits of Teams in Multiagent Learning
- URL: http://arxiv.org/abs/2205.02328v2
- Date: Mon, 31 Jul 2023 16:06:46 GMT
- Title: Exploring the Benefits of Teams in Multiagent Learning
- Authors: David Radke, Kate Larson, Tim Brecht
- Abstract summary: We propose a new model of multiagent teams for reinforcement learning (RL) agents inspired by organizational psychology (OP)
We find that agents divided into teams develop cooperative pro-social policies despite incentives to not cooperate.
Agents are better able to coordinate and learn emergent roles within their teams and achieve higher rewards compared to when the interests of all agents are aligned.
- Score: 5.334505575267924
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: For problems requiring cooperation, many multiagent systems implement
solutions among either individual agents or across an entire population towards
a common goal. Multiagent teams are primarily studied when in conflict;
however, organizational psychology (OP) highlights the benefits of teams among
human populations for learning how to coordinate and cooperate. In this paper,
we propose a new model of multiagent teams for reinforcement learning (RL)
agents inspired by OP and early work on teams in artificial intelligence. We
validate our model using complex social dilemmas that are popular in recent
multiagent RL and find that agents divided into teams develop cooperative
pro-social policies despite incentives to not cooperate. Furthermore, agents
are better able to coordinate and learn emergent roles within their teams and
achieve higher rewards compared to when the interests of all agents are
aligned.
Related papers
- ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - ELIGN: Expectation Alignment as a Multi-Agent Intrinsic Reward [29.737986509769808]
We propose a self-supervised intrinsic reward ELIGN - expectation alignment.
Similar to how animals collaborate in a decentralized manner with those in their vicinity, agents trained with expectation alignment learn behaviors that match their neighbors' expectations.
We show that agent coordination improves through expectation alignment because agents learn to divide tasks amongst themselves, break coordination symmetries, and confuse adversaries.
arXiv Detail & Related papers (2022-10-09T22:24:44Z) - Group-Agent Reinforcement Learning [12.915860504511523]
It can largely benefit the reinforcement learning process of each agent if multiple geographically distributed agents perform their separate RL tasks cooperatively.
We propose a distributed RL framework called DDAL (Decentralised Distributed Asynchronous Learning) designed for group-agent reinforcement learning (GARL)
arXiv Detail & Related papers (2022-02-10T16:40:59Z) - Multi-Agent Collaboration via Reward Attribution Decomposition [75.36911959491228]
We propose Collaborative Q-learning (CollaQ) that achieves state-of-the-art performance in the StarCraft multi-agent challenge.
CollaQ is evaluated on various StarCraft Attribution maps and shows that it outperforms existing state-of-the-art techniques.
arXiv Detail & Related papers (2020-10-16T17:42:11Z) - Natural Emergence of Heterogeneous Strategies in Artificially
Intelligent Competitive Teams [0.0]
We develop a competitive multi agent environment called FortAttack in which two teams compete against each other.
We observe a natural emergence of heterogeneous behavior amongst homogeneous agents when such behavior can lead to the team's success.
We propose ensemble training, in which we utilize the evolved opponent strategies to train a single policy for friendly agents.
arXiv Detail & Related papers (2020-07-06T22:35:56Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
We consider solving a cooperative multi-robot object manipulation task using reinforcement learning (RL)
We propose two distributed multi-agent RL approaches: distributed approximate RL (DA-RL) and game-theoretic RL (GT-RL)
Although we focus on a small system of two agents in this paper, both DA-RL and GT-RL apply to general multi-agent systems, and are expected to scale well to large systems.
arXiv Detail & Related papers (2020-03-21T00:43:54Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
Multi-agent adversarial inverse reinforcement learning (MA-AIRL) is a recent approach that applies single-agent AIRL to multi-agent problems.
We propose a multi-agent inverse RL algorithm that is more sample-efficient and scalable than previous works.
arXiv Detail & Related papers (2020-02-24T20:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.