論文の概要: Interaction Replica: Tracking Human-Object Interaction and Scene Changes From Human Motion
- arxiv url: http://arxiv.org/abs/2205.02830v4
- Date: Mon, 18 Mar 2024 07:11:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 02:10:44.789685
- Title: Interaction Replica: Tracking Human-Object Interaction and Scene Changes From Human Motion
- Title(参考訳): インタラクション・レプリカ:人間と物体の相互作用の追跡と人間の動きからのシーン変化
- Authors: Vladimir Guzov, Julian Chibane, Riccardo Marin, Yannan He, Yunus Saracoglu, Torsten Sattler, Gerard Pons-Moll,
- Abstract要約: 人間による変化をモデル化することは、デジタル双生児を作るのに不可欠である。
本手法は,シーン中の人間の視覚的位置決めとIMUデータからの人間とシーンの相互作用に関する接触に基づく推論を組み合わせたものである。
私たちのコード、データ、モデルは、プロジェクトのページ http://virtual humans.mpi-inf.mpg.de/ireplica/.comで公開されています。
- 参考スコア(独自算出の注目度): 48.982957332374866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our world is not static and humans naturally cause changes in their environments through interactions, e.g., opening doors or moving furniture. Modeling changes caused by humans is essential for building digital twins, e.g., in the context of shared physical-virtual spaces (metaverses) and robotics. In order for widespread adoption of such emerging applications, the sensor setup used to capture the interactions needs to be inexpensive and easy-to-use for non-expert users. I.e., interactions should be captured and modeled by simple ego-centric sensors such as a combination of cameras and IMU sensors, not relying on any external cameras or object trackers. Yet, to the best of our knowledge, no work tackling the challenging problem of modeling human-scene interactions via such an ego-centric sensor setup exists. This paper closes this gap in the literature by developing a novel approach that combines visual localization of humans in the scene with contact-based reasoning about human-scene interactions from IMU data. Interestingly, we can show that even without visual observations of the interactions, human-scene contacts and interactions can be realistically predicted from human pose sequences. Our method, iReplica (Interaction Replica), is an essential first step towards the egocentric capture of human interactions and modeling of dynamic scenes, which is required for future AR/VR applications in immersive virtual universes and for training machines to behave like humans. Our code, data and model are available on our project page at http://virtualhumans.mpi-inf.mpg.de/ireplica/
- Abstract(参考訳): 私たちの世界は静的ではなく、人間は自然に環境の変化を引き起こします。
人間によって引き起こされる変化をモデル化することは、デジタル双生児、例えば、共有物理仮想空間(メタバース)とロボット工学の文脈で構築するために不可欠である。
このような新興アプリケーションを広く採用するためには、対話を捉えるためのセンサーのセットアップは、エキスパートでないユーザにとって安価で使いやすいものにする必要がある。
すなわち、対話は、外部カメラやオブジェクトトラッカーに頼らず、カメラとIMUセンサーの組み合わせのような単純なエゴ中心のセンサーによってキャプチャされ、モデル化されるべきである。
しかし、私たちの知る限りでは、このようなエゴ中心のセンサー設定を通じて人間とシーンのインタラクションをモデル化する難しい問題に対処する作業は存在しない。
本稿は、シーンにおける人間の視覚的位置決めと、IMUデータからの人間とシーンの相互作用に関する接触に基づく推論を組み合わせることによって、文学におけるこのギャップを埋める。
興味深いことに、インタラクションの視覚的な観察がなくても、人間とシーンの接触や相互作用が人間のポーズシーケンスから現実的に予測できることが示される。
我々の手法であるiReplica(Interaction Replica)は,没入型仮想空間における将来のAR/VR応用や,人間のように振る舞うためのトレーニングマシンに必要な,人間との相互作用の自我中心的なキャプチャと動的シーンのモデリングに向けた重要な第一歩である。
私たちのコード、データ、モデルはプロジェクトのページ(http://virtual humans.mpi-inf.mpg.de/ireplica/)で公開されています。
関連論文リスト
- Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - Revisit Human-Scene Interaction via Space Occupancy [55.67657438543008]
HSI(Human-Scene Interaction)の生成は、さまざまな下流タスクに不可欠な課題である。
本研究では,シーンとのインタラクションが,抽象的な物理的視点からシーンの空間占有と本質的に相互作用していることを論じる。
純粋な動きシーケンスを、見えないシーン占有と相互作用する人間の記録として扱うことで、動きのみのデータを大規模にペア化された人間-占有相互作用データベースに集約することができる。
論文 参考訳(メタデータ) (2023-12-05T12:03:00Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
関節間の所望距離を維持するために,新しい制御可能な運動生成手法であるInterControlを導入する。
そこで本研究では,既成の大規模言語モデルを用いて,ヒューマンインタラクションのための結合ペア間の距離を生成できることを実証した。
論文 参考訳(メタデータ) (2023-11-27T14:32:33Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
我々は、特定の物体に付随する神経相互作用場を作成し、人間のポーズを入力として与えられた有効な相互作用多様体までの距離を出力する。
この相互作用場は、対象条件付きヒトの運動拡散モデルのサンプリングを導く。
いくつかの物体で座ったり持ち上げたりするための現実的な動きを合成し、動きの質や動作完了の成功の観点から、代替のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-07-14T17:59:38Z) - Compositional 3D Human-Object Neural Animation [93.38239238988719]
人間と物体の相互作用(HOI)は、人間中心の視覚生成、AR/VR、ロボット工学などの人間中心のシーン理解アプリケーションに不可欠である。
本稿では,HoIアニメーションにおけるこの課題について,作曲の観点から考察する。
我々は、暗黙のニューラル表現に基づいてHOIダイナミクスをモデル化し、レンダリングするために、ニューラル・ヒューマン・オブジェクトの変形を採用する。
論文 参考訳(メタデータ) (2023-04-27T10:04:56Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
マルチビューのRGBDフレームとそれに対応する3D SMPLとオブジェクトをアノテートしたアノテートコンタクトに適合させる。
このデータを用いて、自然環境における人間と物体を、容易に使用可能なマルチカメラで共同で追跡できるモデルを学ぶ。
論文 参考訳(メタデータ) (2022-04-14T13:21:19Z) - Stochastic Scene-Aware Motion Prediction [41.6104600038666]
本稿では,対象物に対して所定の動作を行う異なるスタイルをモデル化する,データ駆動合成動作法を提案する。
SAMP (Scene Aware Motion Prediction) と呼ばれる本手法は, 様々なジオメトリ対象を対象とし, キャラクタが散らばったシーンで移動できるように一般化する。
論文 参考訳(メタデータ) (2021-08-18T17:56:17Z) - Visual Navigation Among Humans with Optimal Control as a Supervisor [72.5188978268463]
そこで本研究では,学習に基づく知覚とモデルに基づく最適制御を組み合わせることで,人間間をナビゲートする手法を提案する。
私たちのアプローチは、新しいデータ生成ツールであるHumANavによって実現されています。
学習したナビゲーションポリシーは、将来の人間の動きを明示的に予測することなく、人間に予測し、反応できることを実証する。
論文 参考訳(メタデータ) (2020-03-20T16:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。