論文の概要: GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion
Classification
- arxiv url: http://arxiv.org/abs/2205.02840v1
- Date: Wed, 4 May 2022 23:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 13:52:27.305225
- Title: GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion
Classification
- Title(参考訳): データ拡張のためのGANインバージョンによる大腸病変分類の改善
- Authors: Mayank Golhar, Taylor L. Bobrow, Saowanee Ngamruengphong, Nicholas J.
Durr
- Abstract要約: 本研究では,GANインバージョンによって生成された合成大腸内視鏡像をトレーニングデータとして利用することにより,ディープラーニングモデルの病変分類性能を向上させることができることを示す。
このアプローチは、同じラベルを持つ一対のイメージを意味的にリッチで不整合な潜在空間に逆転させ、潜在表現を操作して、同じラベルを持つ新しい合成画像を生成する。
また,トレーニングデータセットにおける病変形状の多様性を高めるために,元のトレーニング画像間の補間により,現実的な合成病変画像を生成する。
- 参考スコア(独自算出の注目度): 3.0100246737240877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge in applying deep learning to medical imaging is the paucity
of annotated data. This study demonstrates that synthetic colonoscopy images
generated by Generative Adversarial Network (GAN) inversion can be used as
training data to improve the lesion classification performance of deep learning
models. This approach inverts pairs of images with the same label to a
semantically rich & disentangled latent space and manipulates latent
representations to produce new synthetic images with the same label. We perform
image modality translation (style transfer) between white light and narrowband
imaging (NBI). We also generate realistic-looking synthetic lesion images by
interpolating between original training images to increase the variety of
lesion shapes in the training dataset. We show that these approaches outperform
comparative colonoscopy data augmentation techniques without the need to
re-train multiple generative models. This approach also leverages information
from datasets that may not have been designed for the specific colonoscopy
downstream task. E.g. using a bowel prep grading dataset for a polyp
classification task. Our experiments show this approach can perform multiple
colonoscopy data augmentations, which improve the downstream polyp
classification performance over baseline and comparison methods by up to 6%.
- Abstract(参考訳): 医学画像にディープラーニングを適用する上での大きな課題は、注釈付きデータのpaucityである。
本研究では,gan(generative adversarial network)インバージョンによって生成された合成大腸内視鏡画像が,深層学習モデルの病変分類性能を向上させるための訓練データとして使用できることを示す。
このアプローチでは、同じラベルを持つ画像のペアを意味的にリッチで不連続な潜在空間に反転させ、潜在表現を操作して同じラベルで新しい合成画像を生成する。
ホワイトライトと狭帯域イメージング(nbi)間の画像モダリティ変換(スタイル転送)を行う。
また,トレーニングデータセットにおける病変形状の多様性を高めるために,元のトレーニング画像間の補間により,現実的な合成病変画像を生成する。
これらのアプローチは,複数の生成モデルを再訓練することなく,比較大腸内視鏡データ拡張技術よりも優れていることを示す。
このアプローチはまた、特定の大腸内視鏡下流タスク用に設計されていない可能性のあるデータセットの情報を活用する。
例えば、ポリープ分類タスクにboel prep gradingデータセットを使用する。
以上の結果から,本手法は複数の大腸内視鏡データ拡張が可能であり,ベースラインおよび比較法よりも下流ポリープ分類性能を最大6%向上させることができた。
関連論文リスト
- Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting [0.0]
そこで我々は, 局所病変生成手法を2つ提案し, 小型医用画像データセットの増大に対処する。
最初のアプローチでは、古典的な画像処理技術であるPoisson Image Editingアルゴリズムを使用して、リアルな画像合成を生成する。
第2のアプローチでは、微調整されたイメージインペインティングGANを利用して、現実的な病変を合成する新しい生成手法を導入している。
論文 参考訳(メタデータ) (2024-11-05T13:44:25Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
我々は,GANに基づく拡張性能のデータセットサイズ依存性について,小サンプルに着目して検討した。
両方のセットでStyleGAN2-ADAをトレーニングし、生成した画像の品質を検証した後、マルチクラス分類問題における拡張アプローチの1つとしてトレーニングされたGANを使用する。
GANベースの拡張アプローチは、中規模および大規模データセットでは古典的な拡張に匹敵するが、より小さなデータセットでは不十分である。
論文 参考訳(メタデータ) (2024-01-26T08:28:13Z) - Ulcerative Colitis Mayo Endoscopic Scoring Classification with Active
Learning and Generative Data Augmentation [2.5241576779308335]
深層学習に基づく手法は、これらの画像の自動解析に有効であり、医師の助けになる可能性がある。
本稿では,能動的学習に基づく生成促進手法を提案する。
この方法は、実際の内視鏡画像からなる小さなデータセットを用いてトレーニングすることで、多数の合成サンプルを生成することを含む。
論文 参考訳(メタデータ) (2023-11-10T13:42:21Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
本稿では,実解剖情報を活用し,腫瘍の現実的な画像ラベル対を生成する新しい生成法を提案する。
解剖学的画像とラベルのためのデュアルパス生成器を構築し, 独立して事前学習されたセグメンタによって制約された, サイクル一貫性のある設定で学習する。
生成した画像は,既存の手法に比べて定量的に顕著に改善された。
論文 参考訳(メタデータ) (2021-04-22T11:18:17Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
注釈付き病理を持つ合成データベースは、必要なトレーニングデータを提供することができる。
画像から画像への変換モデルを訓練し、脳卒中病変を伴わない脳の容積の磁気共鳴像を合成する。
臨床例は10例, 50例に過ぎなかったが, 総合的なデータ拡張は有意な改善をもたらすことが示唆された。
論文 参考訳(メタデータ) (2020-10-05T09:12:28Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。