論文の概要: Ulcerative Colitis Mayo Endoscopic Scoring Classification with Active
Learning and Generative Data Augmentation
- arxiv url: http://arxiv.org/abs/2311.06057v1
- Date: Fri, 10 Nov 2023 13:42:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 15:06:21.187047
- Title: Ulcerative Colitis Mayo Endoscopic Scoring Classification with Active
Learning and Generative Data Augmentation
- Title(参考訳): アクティブラーニングと生成データ増強を併用した潰瘍性大腸炎マヨ内視鏡検査
- Authors: \"Umit Mert \c{C}a\u{g}lar, Alperen \.Inci, O\u{g}uz Hano\u{g}lu,
G\"orkem Polat, Alptekin Temizel
- Abstract要約: 深層学習に基づく手法は、これらの画像の自動解析に有効であり、医師の助けになる可能性がある。
本稿では,能動的学習に基づく生成促進手法を提案する。
この方法は、実際の内視鏡画像からなる小さなデータセットを用いてトレーニングすることで、多数の合成サンプルを生成することを含む。
- 参考スコア(独自算出の注目度): 2.5241576779308335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Endoscopic imaging is commonly used to diagnose Ulcerative Colitis (UC) and
classify its severity. It has been shown that deep learning based methods are
effective in automated analysis of these images and can potentially be used to
aid medical doctors. Unleashing the full potential of these methods depends on
the availability of large amount of labeled images; however, obtaining and
labeling these images are quite challenging. In this paper, we propose a active
learning based generative augmentation method. The method involves generating a
large number of synthetic samples by training using a small dataset consisting
of real endoscopic images. The resulting data pool is narrowed down by using
active learning methods to select the most informative samples, which are then
used to train a classifier. We demonstrate the effectiveness of our method
through experiments on a publicly available endoscopic image dataset. The
results show that using synthesized samples in conjunction with active learning
leads to improved classification performance compared to using only the
original labeled examples and the baseline classification performance of 68.1%
increases to 74.5% in terms of Quadratic Weighted Kappa (QWK) Score. Another
observation is that, attaining equivalent performance using only real data
necessitated three times higher number of images.
- Abstract(参考訳): 内視鏡イメージングは潰瘍性大腸炎(uc)の診断や重症度分類に一般的に用いられる。
深層学習に基づく手法は, これらの画像の自動解析に有効であり, 医師の助けとなる可能性があることが示されている。
これらの手法の完全な可能性を解き放つことは、大量のラベル付き画像の可用性に依存するが、これらの画像の取得とラベル付けは極めて困難である。
本稿では,能動的学習に基づく生成促進手法を提案する。
この方法は、実際の内視鏡画像からなる小さなデータセットを使用して、多数の合成サンプルを生成することを含む。
得られたデータプールは、アクティブな学習方法を使用して最も情報性の高いサンプルを選択し、次に分類器を訓練する。
提案手法の有効性を実演し,公開画像データセットを用いた実験を行った。
その結果, アクティブラーニングと組み合わせて合成サンプルを用いることで, 従来のラベル付きサンプルよりも分類性能が向上し, 準重み付きカッパスコアでは68.1%のベースライン分類性能が74.5%に向上した。
また、実データのみを使用して同等の性能を達成するには、画像の3倍の精度が必要となるという観測もある。
関連論文リスト
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
本研究では,自己指導型学習と知識蒸留を用いた新しいハイブリッド学習モデルを提案する。
我々のアルゴリズムでは、自己教師型学習および知識蒸留モデルの中で初めて、テストデータセットがトレーニングデータセットよりも50%大きい。
類似の最先端モデルと比較すると,より高精度で効率的な表現空間が得られた。
論文 参考訳(メタデータ) (2024-10-01T15:19:16Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
我々は,GANに基づく拡張性能のデータセットサイズ依存性について,小サンプルに着目して検討した。
両方のセットでStyleGAN2-ADAをトレーニングし、生成した画像の品質を検証した後、マルチクラス分類問題における拡張アプローチの1つとしてトレーニングされたGANを使用する。
GANベースの拡張アプローチは、中規模および大規模データセットでは古典的な拡張に匹敵するが、より小さなデータセットでは不十分である。
論文 参考訳(メタデータ) (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
本稿では,ロバストな医用画像分類のためのグローバルおよびローカルな表現学習を用いた新しい協調学習パラダイムを提案する。
ノイズラベルフィルタを用いた自己アンサンブルモデルを用いて、クリーンでノイズの多いサンプルを効率的に選択する。
また,ネットワークを暗黙的に正規化してノイズの多いサンプルを利用するための,グローバルかつ局所的な表現学習手法を設計する。
論文 参考訳(メタデータ) (2022-05-10T07:50:08Z) - GAN Inversion for Data Augmentation to Improve Colonoscopy Lesion
Classification [3.0100246737240877]
本研究では,GANインバージョンによって生成された合成大腸内視鏡像をトレーニングデータとして利用することにより,ディープラーニングモデルの病変分類性能を向上させることができることを示す。
このアプローチは、同じラベルを持つ一対のイメージを意味的にリッチで不整合な潜在空間に逆転させ、潜在表現を操作して、同じラベルを持つ新しい合成画像を生成する。
また,トレーニングデータセットにおける病変形状の多様性を高めるために,元のトレーニング画像間の補間により,現実的な合成病変画像を生成する。
論文 参考訳(メタデータ) (2022-05-04T23:15:45Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
Weakly-Supervised Generative Adversarial Networks (WSGAN) と呼ばれる新しい医用画像分類アルゴリズムを提案する。
WSGANは、ラベルのない少数の実画像のみを使用して、偽画像やマスク画像を生成し、トレーニングセットのサンプルサイズを拡大する。
ラベル付きデータやラベルなしデータの少ない使用により,WSGANは比較的高い学習性能が得られることを示す。
論文 参考訳(メタデータ) (2021-11-29T15:38:48Z) - Enhanced Transfer Learning Through Medical Imaging and Patient
Demographic Data Fusion [0.0]
画像特徴と関連する非画像データとを組み合わせた医療画像データの分類における性能向上について検討した。
特徴抽出器として直接使用し,対象領域に微調整を施したImageNetで事前訓練したネットワークを用いた転送学習を利用する。
論文 参考訳(メタデータ) (2021-11-29T09:11:52Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Self supervised contrastive learning for digital histopathology [0.0]
我々はSimCLRと呼ばれる対照的な自己教師型学習手法を用いて、自然シーン画像の最先端結果を得た。
異なる種類の染色特性と分解特性とを組み合わせることで,学習した特徴の質が向上することがわかった。
学習した機能に基づいてトレーニングされた線形分類器は、デジタル病理学データセットで事前トレーニングされたネットワークが、ImageNet事前トレーニングされたネットワークよりも優れたパフォーマンスを示すことを示している。
論文 参考訳(メタデータ) (2020-11-27T19:18:45Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。