論文の概要: A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech
Recognition
- arxiv url: http://arxiv.org/abs/2205.03027v1
- Date: Fri, 6 May 2022 06:07:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 13:57:58.114415
- Title: A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech
Recognition
- Title(参考訳): 高精度多次元音声認識のための適応音響モデル
- Authors: Sanghyun Yoo, Inchul Song, Yoshua Bengio
- Abstract要約: 単一AMを用いた高精度多言語音声認識のための新しい音響モデリング手法を提案する。
提案するAMは、方言情報とその内部表現に基づいて動的に適応し、複数の方言を同時に扱うための高度適応型AMとなる。
大規模音声データセットにおける実験結果から,提案したAMは,方言固有のAMと比較して,単語誤り率(WER)が8.11%,方言固有のAMに比べて7.31%向上していることがわかった。
- 参考スコア(独自算出の注目度): 80.87085897419982
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite the success of deep learning in speech recognition, multi-dialect
speech recognition remains a difficult problem. Although dialect-specific
acoustic models are known to perform well in general, they are not easy to
maintain when dialect-specific data is scarce and the number of dialects for
each language is large. Therefore, a single unified acoustic model (AM) that
generalizes well for many dialects has been in demand. In this paper, we
propose a novel acoustic modeling technique for accurate multi-dialect speech
recognition with a single AM. Our proposed AM is dynamically adapted based on
both dialect information and its internal representation, which results in a
highly adaptive AM for handling multiple dialects simultaneously. We also
propose a simple but effective training method to deal with unseen dialects.
The experimental results on large scale speech datasets show that the proposed
AM outperforms all the previous ones, reducing word error rates (WERs) by 8.11%
relative compared to a single all-dialects AM and by 7.31% relative compared to
dialect-specific AMs.
- Abstract(参考訳): 音声認識におけるディープラーニングの成功にもかかわらず、多言語音声認識は難しい問題である。
方言特化音響モデルは一般によく機能することが知られているが、方言特化データが乏しく、言語ごとの方言の数が多い場合には維持が困難である。
したがって、多くの方言でよく一般化される単一統一音響モデル (AM) が要求されている。
本稿では,単一のamを用いた高精度マルチダイアレクト音声認識のための新しい音響モデル手法を提案する。
提案するAMは、方言情報とその内部表現に基づいて動的に適応し、複数の方言を同時に扱うための高度適応型AMとなる。
また,未知の方言に対処するための簡易かつ効果的な訓練手法を提案する。
大規模音声データセットにおける実験結果から,提案したAMは,方言固有のAMと比較して,単語誤り率(WER)が8.11%,方言固有のAMに比べて7.31%向上していることがわかった。
関連論文リスト
- Literary and Colloquial Dialect Identification for Tamil using Acoustic Features [0.0]
音声技術は、言語の様々な方言が絶滅しないようにする役割を担っている。
現在の研究は、人気のある2つのタミル方言と広く分類されたタミル方言を識別する方法を提案する。
論文 参考訳(メタデータ) (2024-08-27T09:00:27Z) - Task-Agnostic Low-Rank Adapters for Unseen English Dialects [52.88554155235167]
LLM(Large Language Models)は、標準アメリカ英語を好んで不均等に重み付けされたコーパスで訓練される。
HyperLoRAは、方言特化情報と方言横断情報を混同することにより、タスクに依存しない方法で未確認の方言への一般化を改善する。
論文 参考訳(メタデータ) (2023-11-02T01:17:29Z) - Disentangling Voice and Content with Self-Supervision for Speaker
Recognition [57.446013973449645]
本稿では,音声における話者の特性と内容の変動を同時にモデル化するアンタングル化フレームワークを提案する。
実験はVoxCelebとSITWのデータセットで実施され、EERとminDCFの平均減少率は9.56%と8.24%である。
論文 参考訳(メタデータ) (2023-10-02T12:02:07Z) - DADA: Dialect Adaptation via Dynamic Aggregation of Linguistic Rules [64.93179829965072]
DADAは、多言語対応のSAE訓練モデルに対するモジュラーアプローチである。
DADAは単一タスクと命令言語モデルの両方に有効であることを示す。
論文 参考訳(メタデータ) (2023-05-22T18:43:31Z) - End-to-End Automatic Speech Recognition model for the Sudanese Dialect [0.0]
本稿では,スーダン方言における音声認識モデルの設計の可能性を検討する。
本稿では,スーダン方言の概要と表現資源の収集作業,および質素なデータセット構築のための前処理について述べる。
設計されたモデルは、現在の認識タスクに関するいくつかの洞察を与え、平均的なラベルエラーレート73.67%に達した。
論文 参考訳(メタデータ) (2022-12-21T07:35:33Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning
for Low-Resource Speech Recognition [159.9312272042253]
Wav-BERTは、協調的な音響および言語表現学習法である。
我々は、事前訓練された音響モデル(wav2vec 2.0)と言語モデル(BERT)をエンドツーエンドのトレーニング可能なフレームワークに統合する。
論文 参考訳(メタデータ) (2021-09-19T16:39:22Z) - English Accent Accuracy Analysis in a State-of-the-Art Automatic Speech
Recognition System [3.4888132404740797]
様々なラベル付き英語アクセントを持つコーパスからの未認識データを用いて,最先端の自動音声認識モデルを評価する。
本研究は,アクセントの多様性に関して,訓練コーパスで最も普及しているアクセントに有利な正確性バイアスが存在することを示す。
論文 参考訳(メタデータ) (2021-05-09T08:24:33Z) - Learning to Recognize Dialect Features [21.277962038423123]
本稿では,方言の特徴検出の課題を紹介するとともに,2つのマルチタスク学習手法を提案する。
言語学者は通常、方言の特徴をどのように定義するかに基づいて、モデルを少数の最小のペアでトレーニングします。
論文 参考訳(メタデータ) (2020-10-23T23:25:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。