論文の概要: Literary and Colloquial Dialect Identification for Tamil using Acoustic Features
- arxiv url: http://arxiv.org/abs/2408.14887v1
- Date: Tue, 27 Aug 2024 09:00:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 14:23:37.093832
- Title: Literary and Colloquial Dialect Identification for Tamil using Acoustic Features
- Title(参考訳): 音響特徴量を用いたタミル語の文字・口語辞書同定
- Authors: M. Nanmalar, P. Vijayalakshmi, T. Nagarajan,
- Abstract要約: 音声技術は、言語の様々な方言が絶滅しないようにする役割を担っている。
現在の研究は、人気のある2つのタミル方言と広く分類されたタミル方言を識別する方法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evolution and diversity of a language is evident from it's various dialects. If the various dialects are not addressed in technological advancements like automatic speech recognition and speech synthesis, there is a chance that these dialects may disappear. Speech technology plays a role in preserving various dialects of a language from going extinct. In order to build a full fledged automatic speech recognition system that addresses various dialects, an Automatic Dialect Identification (ADI) system acting as the front end is required. This is similar to how language identification systems act as front ends to automatic speech recognition systems that handle multiple languages. The current work proposes a way to identify two popular and broadly classified Tamil dialects, namely literary and colloquial Tamil. Acoustical characteristics rather than phonetics and phonotactics are used, alleviating the requirement of language-dependant linguistic tools. Hence one major advantage of the proposed method is that it does not require an annotated corpus, hence it can be easily adapted to other languages. Gaussian Mixture Models (GMM) using Mel Frequency Cepstral Coefficient (MFCC) features are used to perform the classification task. The experiments yielded an error rate of 12%. Vowel nasalization, as being the reason for this good performance, is discussed. The number of mixture models for the GMM is varied and the performance is analysed.
- Abstract(参考訳): 言語の進化と多様性は、様々な方言から明らかである。
音声認識や音声合成といった技術進歩に様々な方言が対応していない場合、これらの方言は消滅する可能性がある。
音声技術は、言語の様々な方言が絶滅しないようにする役割を担っている。
様々な方言に対処する音声認識システムを構築するためには,フロントエンドとして機能する自動方言識別(ADI)システムが必要である。
これは、複数の言語を扱う音声認識システムにおいて、言語識別システムがフロントエンドとして機能する方法に似ている。
現在の研究は、広く分類された2つのタミル方言、すなわち文学的・口語的なタミル方言を識別する方法を提案している。
音声学や音韻学よりも音響的特徴を使い、言語依存言語ツールの要件を緩和する。
したがって、提案手法の大きな利点は、注釈付きコーパスを必要としないため、他の言語に容易に適応できることである。
MFCC(Mel Frequency Cepstral Coefficient)機能を用いたガウス混合モデル(GMM)を用いて分類処理を行う。
実験の結果,誤差率は12%であった。
この優れたパフォーマンスの理由として、母音の鼻腔化について論じられている。
GMMの混合モデルの数は様々であり、性能を解析する。
関連論文リスト
- What Do Dialect Speakers Want? A Survey of Attitudes Towards Language Technology for German Dialects [60.8361859783634]
我々はドイツ語に関連する方言と地域言語に関する話者を調査した。
回答者は特に、方言入力で動作する潜在的なNLPツールを好んでいる。
論文 参考訳(メタデータ) (2024-02-19T09:15:28Z) - DADA: Dialect Adaptation via Dynamic Aggregation of Linguistic Rules [64.93179829965072]
DADAは、多言語対応のSAE訓練モデルに対するモジュラーアプローチである。
DADAは単一タスクと命令言語モデルの両方に有効であることを示す。
論文 参考訳(メタデータ) (2023-05-22T18:43:31Z) - Multi-VALUE: A Framework for Cross-Dialectal English NLP [49.55176102659081]
マルチディレクト (Multi-Dilect) は、50の英語方言にまたがる制御可能なルールベースの翻訳システムである。
ストレステストは、非標準方言の先行モデルに対する顕著な性能格差を示す。
私たちはチカノやインド英語のネイティブスピーカーと提携して、人気のあるCoQAタスクの新しいゴールドスタンダード版をリリースしています。
論文 参考訳(メタデータ) (2022-12-15T18:17:01Z) - Language-agnostic Code-Switching in Sequence-To-Sequence Speech
Recognition [62.997667081978825]
コードスイッチング(Code-Switching, CS)とは、異なる言語の単語やフレーズを交互に使用する現象である。
本稿では,異なるソース言語の音声および対応するラベルを転写する,シンプルで効果的なデータ拡張手法を提案する。
さらに,5,03%のWERによるトレーニング中に見つからない文間言語スイッチにおいて,モデルの性能を向上できることを示す。
論文 参考訳(メタデータ) (2022-10-17T12:15:57Z) - Automatic Spoken Language Identification using a Time-Delay Neural
Network [0.0]
アラビア語、スペイン語、フランス語、トルコ語を区別するために言語識別システムが作られた。
既存の多言語データセットを使用して、一連の音響モデルのトレーニングを行った。
このシステムは、カスタム多言語言語モデルと特殊発音辞書を備えていた。
論文 参考訳(メタデータ) (2022-05-19T13:47:48Z) - A Highly Adaptive Acoustic Model for Accurate Multi-Dialect Speech
Recognition [80.87085897419982]
単一AMを用いた高精度多言語音声認識のための新しい音響モデリング手法を提案する。
提案するAMは、方言情報とその内部表現に基づいて動的に適応し、複数の方言を同時に扱うための高度適応型AMとなる。
大規模音声データセットにおける実験結果から,提案したAMは,方言固有のAMと比較して,単語誤り率(WER)が8.11%,方言固有のAMに比べて7.31%向上していることがわかった。
論文 参考訳(メタデータ) (2022-05-06T06:07:09Z) - Analysis of French Phonetic Idiosyncrasies for Accent Recognition [0.8602553195689513]
発音の違い、アクセントと音声のイントネーションは、音声認識の最も一般的な問題の1つである。
従来の機械学習技術と畳み込みニューラルネットワークを使い、古典的手法ではこの問題を解決するのに十分な効率が得られていないことを示す。
本稿では,フランス語のアクセントに焦点をあてるとともに,そのスペクトルに対するフランス語の慣用音の影響を理解することによって,その限界を識別する。
論文 参考訳(メタデータ) (2021-10-18T10:50:50Z) - Acoustics Based Intent Recognition Using Discovered Phonetic Units for
Low Resource Languages [51.0542215642794]
本稿では,検出された音素単位を意図分類に用いる新しい音響に基づく意図認識システムを提案する。
我々は,2つの言語群 – インディカル言語とロマンス言語 – に対する2つの異なる意図認識タスクの結果を提示する。
論文 参考訳(メタデータ) (2020-11-07T00:35:31Z) - Learning to Recognize Dialect Features [21.277962038423123]
本稿では,方言の特徴検出の課題を紹介するとともに,2つのマルチタスク学習手法を提案する。
言語学者は通常、方言の特徴をどのように定義するかに基づいて、モデルを少数の最小のペアでトレーニングします。
論文 参考訳(メタデータ) (2020-10-23T23:25:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。