論文の概要: Multichannel Synthetic Preictal EEG Signals to Enhance the Prediction of
Epileptic Seizures
- arxiv url: http://arxiv.org/abs/2205.03239v1
- Date: Fri, 29 Apr 2022 03:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 01:13:48.802125
- Title: Multichannel Synthetic Preictal EEG Signals to Enhance the Prediction of
Epileptic Seizures
- Title(参考訳): てんかん発作の予測を支援する多チャンネル合成前脳波信号
- Authors: Yankun Xu, Jie Yang, and Mohamad Sawan
- Abstract要約: 合成多チャンネル脳波前駆体サンプルを生成するために, 生成逆数ネットワークに基づくプレクタル人工信号合成アルゴリズムを提案する。
また, ES予測性能を, 合成前駆体試料増量なしで比較することにより, 合成試料の有効性を評価した。
- 参考スコア(独自算出の注目度): 4.446776063493561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Epilepsy is a chronic neurological disorder affecting 1\% of people
worldwide, deep learning (DL) algorithms-based electroencephalograph (EEG)
analysis provides the possibility for accurate epileptic seizure (ES)
prediction, thereby benefiting patients suffering from epilepsy. To identify
the preictal region that precedes the onset of seizure, a large number of
annotated EEG signals are required to train DL algorithms. However, the
scarcity of seizure onsets leads to significant insufficiency of data for
training the DL algorithms. To overcome this data insufficiency, in this paper,
we propose a preictal artificial signal synthesis algorithm based on a
generative adversarial network to generate synthetic multichannel EEG preictal
samples. A high-quality single-channel architecture, determined by visual and
statistical evaluations, is used to train the generators of multichannel
samples. The effectiveness of the synthetic samples is evaluated by comparing
the ES prediction performances without and with synthetic preictal sample
augmentation. The leave-one-seizure-out cross validation ES prediction accuracy
and corresponding area under the receiver operating characteristic curve
evaluation improve from 73.0\% and 0.676 to 78.0\% and 0.704 by 10$\times$
synthetic sample augmentation, respectively. The obtained results indicate that
synthetic preictal samples are effective for enhancing ES prediction
performance.
- Abstract(参考訳): てんかんは、世界中の16%の人に影響を及ぼす慢性神経疾患であり、ディープラーニング(DL)アルゴリズムに基づく脳波解析により、正確なてんかん発作(ES)予測が可能となり、てんかんに苦しむ患者に利益をもたらす。
発作発生前の前頭葉領域を特定するには、DLアルゴリズムのトレーニングには多数の注釈付き脳波信号が必要である。
しかし、発作の発症頻度が低いため、DLアルゴリズムを訓練するデータは非常に不十分である。
このデータ不足を克服するため,本稿では,合成マルチチャネルEEGプリシタルサンプルを生成するために,生成逆数ネットワークに基づくプリシタル人工信号合成アルゴリズムを提案する。
視覚的および統計的評価によって決定される高品質のシングルチャネルアーキテクチャを用いて、マルチチャネルサンプルの生成を訓練する。
また, ES予測性能を, 合成前駆体試料増量なしで比較することにより, 合成試料の有効性を評価した。
受信機動作特性曲線評価における余剰一精算クロス検証es予測精度と対応する面積は,それぞれ73.0\%,0.676から78.0\%,0.704で10$\times$合成試料増量により改善した。
その結果, 合成プレクタル試料はES予測性能の向上に有効であることが示唆された。
関連論文リスト
- From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
側頭葉てんかんの3分の1は薬剤耐性を示す。
抗敗血症薬開発の鍵となるのはてんかん発作の検出と定量化である。
本研究では,脳波信号に適用した深層学習モデルに基づく発作検出パイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-04T12:52:37Z) - Early Warning Prediction with Automatic Labeling in Epilepsy Patients [4.6700203020828885]
本稿では,初期文字信号の予測を改善するメタ学習フレームワークを提案する。
提案された双方向最適化フレームワークは、初期段階におけるノイズの多いデータを自動的にラベル付けするのに役立つ。
論文 参考訳(メタデータ) (2023-10-09T18:12:46Z) - Lightweight Convolution Transformer for Cross-patient Seizure Detection
in Multi-channel EEG Signals [0.0]
本研究では、新しいディープラーニングアーキテクチャに基づく軽量畳み込み変換器(LCT)を提案する。
変換器は、多チャンネル脳波(EEG)信号から空間的および時間的相関情報を同時に学習し、より小さなセグメント長で発作を検出する。
論文 参考訳(メタデータ) (2023-05-07T16:43:52Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - A Generative Model to Synthesize EEG Data for Epileptic Seizure
Prediction [3.8271082752302137]
本稿では, 合成脳波サンプルを生成するための深層畳み込み生成対向ネットワークを提案する。
我々は合成データ、すなわち1クラスSVMと、畳み込みてんかん発作予測器(CESP)と呼ばれる新しい提案を2つの手法で検証する。
以上の結果から,CESPモデルでは78.11%,88.21%,FPR0.27/h,0.14/hの感度が得られた。
論文 参考訳(メタデータ) (2020-12-01T12:00:36Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Improved Preterm Prediction Based on Optimized Synthetic Sampling of EHG
Signal [3.0625456792807424]
子宮収縮と電気活動の相互関係は、子宮電気ヒステグラム(EHG)を早期発見と予測のための有望な方向へと導く。
EHGシグナルの不足、特に短期患者の信号の不足により、合成アルゴリズムを適用して、事前型の人工的なサンプルを作成する。
論文 参考訳(メタデータ) (2020-07-03T01:12:31Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。