論文の概要: Early Warning Prediction with Automatic Labeling in Epilepsy Patients
- arxiv url: http://arxiv.org/abs/2310.06059v2
- Date: Thu, 11 Jan 2024 08:38:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-13 03:19:02.051790
- Title: Early Warning Prediction with Automatic Labeling in Epilepsy Patients
- Title(参考訳): てんかん患者における自動ラベリングによる早期警告予測
- Authors: Peng Zhang, Ting Gao, Jin Guo, Jinqiao Duan, Sergey Nikolenko
- Abstract要約: 本稿では,初期文字信号の予測を改善するメタ学習フレームワークを提案する。
提案された双方向最適化フレームワークは、初期段階におけるノイズの多いデータを自動的にラベル付けするのに役立つ。
- 参考スコア(独自算出の注目度): 4.6700203020828885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early warning for epilepsy patients is crucial for their safety and
well-being, in particular to prevent or minimize the severity of seizures.
Through the patients' EEG data, we propose a meta learning framework to improve
the prediction of early ictal signals. The proposed bi-level optimization
framework can help automatically label noisy data at the early ictal stage, as
well as optimize the training accuracy of the backbone model. To validate our
approach, we conduct a series of experiments to predict seizure onset in
various long-term windows, with LSTM and ResNet implemented as the baseline
models. Our study demonstrates that not only the ictal prediction accuracy
obtained by meta learning is significantly improved, but also the resulting
model captures some intrinsic patterns of the noisy data that a single backbone
model could not learn. As a result, the predicted probability generated by the
meta network serves as a highly effective early warning indicator.
- Abstract(参考訳): てんかん患者に対する早期の警告は、特に発作の重症度を予防または最小化するために、安全と幸福のために重要である。
患者の脳波データを通して,早期ictal信号の予測を改善するためのメタラーニングフレームワークを提案する。
提案するバイレベル最適化フレームワークは,初期段階におけるノイズデータの自動ラベル付けや,バックボーンモデルのトレーニング精度の最適化を支援する。
本手法の有効性を検証するため,LSTMとResNetをベースラインモデルとして,様々な長期ウィンドウにおける発作発生を予測する一連の実験を行った。
本研究は,メタ学習によって得られたictal予測精度が大幅に向上するだけでなく,単一バックボーンモデルでは学習できないノイズデータの特徴的パターンを捉えていることを示す。
その結果、メタネットワークが生成する予測確率は、非常に効果的な早期警戒指標となる。
関連論文リスト
- Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
グラディエントブースティングモデル(GBM)は、トレーニング速度、解釈可能性、信頼性の点で、シーケンシャルモデルを上回った。
タイムリーな介入のために5分間の予測ウィンドウが選択された。
本研究は、トリアージを改善し、アラーム疲労を軽減するMLの可能性を強調した。
論文 参考訳(メタデータ) (2024-10-30T23:24:28Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - SincVAE: a New Approach to Improve Anomaly Detection on EEG Data Using SincNet and Variational Autoencoder [0.0]
本研究では,脳波データからてんかん発作を検出するための半教師付きアプローチを提案する。
以上の結果から,SncVAEは脳波データにおける発作検出を改善し,早期発作の早期発見と術後経過のモニタリングが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-06-25T13:21:01Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
発作予知システムの目的は、発作が起こる前に起こる前頭前脳のステージを正常に識別することである。
患者に依存しない発作予測モデルは、データセット内の複数の被験者に正確なパフォーマンスを提供するように設計されている。
患者に依存しない2つの深層学習アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-18T23:13:48Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。