論文の概要: Application of Clustering Algorithms for Dimensionality Reduction in
Infrastructure Resilience Prediction Models
- arxiv url: http://arxiv.org/abs/2205.03316v1
- Date: Fri, 6 May 2022 15:51:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 14:20:10.249574
- Title: Application of Clustering Algorithms for Dimensionality Reduction in
Infrastructure Resilience Prediction Models
- Title(参考訳): インフラストラクチャレジリエンス予測モデルにおけるクラスタリングアルゴリズムの次元性低減への応用
- Authors: Srijith Balakrishnan, Beatrice Cassottana, Arun Verma
- Abstract要約: 本稿では,高次元の問題を同時に最小化し,機械学習モデルの予測精度を向上させるクラスタリング手法を提案する。
提案手法は,インフラストラクチャネットワークの障害後復旧のための意思決定支援ツールの開発に利用できる。
- 参考スコア(独自算出の注目度): 4.350783459690612
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent studies increasingly adopt simulation-based machine learning (ML)
models to analyze critical infrastructure system resilience. For realistic
applications, these ML models consider the component-level characteristics that
influence the network response during emergencies. However, such an approach
could result in a large number of features and cause ML models to suffer from
the `curse of dimensionality'. We present a clustering-based method that
simultaneously minimizes the problem of high-dimensionality and improves the
prediction accuracy of ML models developed for resilience analysis in
large-scale interdependent infrastructure networks. The methodology has three
parts: (a) generation of simulation dataset, (b) network component clustering,
and (c) dimensionality reduction and development of prediction models. First,
an interdependent infrastructure simulation model simulates the network-wide
consequences of various disruptive events. The component-level features are
extracted from the simulated data. Next, clustering algorithms are used to
derive the cluster-level features by grouping component-level features based on
their topological and functional characteristics. Finally, ML algorithms are
used to develop models that predict the network-wide impacts of disruptive
events using the cluster-level features. The applicability of the method is
demonstrated using an interdependent power-water-transport testbed. The
proposed method can be used to develop decision-support tools for post-disaster
recovery of infrastructure networks.
- Abstract(参考訳): 最近の研究では、重要なインフラストラクチャシステムのレジリエンスを分析するために、シミュレーションベースの機械学習(ml)モデルが採用されている。
現実的なアプリケーションの場合、これらのMLモデルは緊急時のネットワーク応答に影響を与えるコンポーネントレベルの特性を考慮に入れます。
しかし、このようなアプローチは多数の機能をもたらし、mlモデルが‘次元の曲線’に苦しむ可能性がある。
大規模相互依存型ネットワークにおけるレジリエンス解析のために開発したMLモデルの予測精度を向上し,高次元性の問題の最小化を同時に行うクラスタリング方式を提案する。
方法論には3つの部分があります
(a)シミュレーションデータセットの生成
(b)ネットワークコンポーネントクラスタリング、および
(c)次元の低減と予測モデルの開発。
まず、相互依存型インフラストラクチャシミュレーションモデルが、様々な破壊的なイベントのネットワーク全体の結果をシミュレートする。
シミュレーションデータからコンポーネントレベルの特徴を抽出する。
次に、クラスタリングアルゴリズムを用いて、そのトポロジ的特徴と機能的特徴に基づいて、コンポーネントレベルの特徴をグループ化する。
最後に、MLアルゴリズムを使用して、クラスタレベルの機能を使用して破壊的なイベントのネットワーク全体の影響を予測するモデルを開発する。
本手法の適用性は, 相互依存型送水テストベッドを用いて実証した。
提案手法は,インフラストラクチャネットワークの障害後復旧のための意思決定支援ツールの開発に利用できる。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - A method for quantifying the generalization capabilities of generative models for solving Ising models [5.699467840225041]
我々は、ハミング距離正規化器を用いて、VANと組み合わせた様々なネットワークアーキテクチャの一般化能力を定量化する。
フィードフォワードニューラルネットワーク,リカレントニューラルネットワーク,グラフニューラルネットワークなど,VANと組み合わせたネットワークアーキテクチャの数値実験を行う。
本手法は,大規模Isingモデルの解法において,最適なネットワークアーキテクチャを探索するニューラルネットワーク探索の分野を支援する上で,非常に重要である。
論文 参考訳(メタデータ) (2024-05-06T12:58:48Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Generalizable data-driven turbulence closure modeling on unstructured grids with differentiable physics [1.8749305679160366]
本研究では,Navier-Stokes方程式を解くために,有限要素ソルバ内にディープラーニングモデルを埋め込むフレームワークを提案する。
後方向きのステップを流れる流れの手法を検証し,その性能を新しい測地で検証する。
我々は,GNNに基づくクロージャモデルについて,解法制約付き最適化としてクロージャモデリングを解釈することにより,データ制限シナリオで学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-25T14:27:49Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Semi-Structured Distributional Regression -- Extending Structured
Additive Models by Arbitrary Deep Neural Networks and Data Modalities [0.0]
本稿では、構造化回帰モデルとディープニューラルネットワークを統合ネットワークアーキテクチャに結合する一般的なフレームワークを提案する。
数値実験において,本フレームワークの有効性を実証し,ベンチマークや実世界の応用において,そのメリットを実証する。
論文 参考訳(メタデータ) (2020-02-13T21:01:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。