論文の概要: Enhancing Non-Intrusive Load Monitoring with Features Extracted by Independent Component Analysis
- arxiv url: http://arxiv.org/abs/2501.16817v1
- Date: Tue, 28 Jan 2025 09:45:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:40:02.757303
- Title: Enhancing Non-Intrusive Load Monitoring with Features Extracted by Independent Component Analysis
- Title(参考訳): 独立成分分析による特徴抽出による非侵入負荷モニタリングの強化
- Authors: Sahar Moghimian Hoosh, Ilia Kamyshev, Henni Ouerdane,
- Abstract要約: エネルギー分散アルゴリズムの課題に対処するために,新しいニューラルネットワークアーキテクチャを提案する。
以上の結果から, モデルが過度に適合しにくく, 複雑度が低く, 個々の成分で効果的に分解できることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, a novel neural network architecture is proposed to address the challenges in energy disaggregation algorithms. These challenges include the limited availability of data and the complexity of disaggregating a large number of appliances operating simultaneously. The proposed model utilizes independent component analysis as the backbone of the neural network and is evaluated using the F1-score for varying numbers of appliances working concurrently. Our results demonstrate that the model is less prone to overfitting, exhibits low complexity, and effectively decomposes signals with many individual components. Furthermore, we show that the proposed model outperforms existing algorithms when applied to real-world data.
- Abstract(参考訳): 本稿では,エネルギー分散アルゴリズムの課題に対処するために,新しいニューラルネットワークアーキテクチャを提案する。
これらの課題には、データの可用性の制限と、同時に動作する多数のアプライアンスを分離する複雑さが含まれる。
提案モデルでは,独立成分分析をニューラルネットワークのバックボーンとして利用し,F1スコアを用いて並列に動作する各種アプライアンスについて評価する。
以上の結果から, モデルは過度に適合しにくく, 複雑度が低く, 個々の成分で効果的に分解できることが示唆された。
さらに,提案手法は実世界のデータに適用した場合,既存のアルゴリズムよりも優れていることを示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErtは物理システムのデータ駆動分析と合成のためのフレームワークである。
これは、前方および逆写像を表す決定論的デコーダ、系の出力の確率分布を捉える正規化フロー、入力と出力の間の単射性の欠如についてコンパクトな潜在表現を学ぶ変分エンコーダを使用する。
論文 参考訳(メタデータ) (2023-07-24T07:58:18Z) - Beyond Multilayer Perceptrons: Investigating Complex Topologies in
Neural Networks [0.12289361708127873]
ニューラルネットワーク(ANN)の近似能力に及ぼすネットワークトポロジの影響について検討する。
本稿では,Barab'asi-Albert,ErdHos-R'enyi,Watts-Strogatz,Multilayer perceptrons(MLPs)など,様々なトポロジに基づく複雑なANNの構築手法を提案する。
構築されたネットワークは、多様体学習ジェネレータから生成された合成データセット、タスクの難易度とノイズのレベル、およびUCIの実際のデータセットに基づいて評価される。
論文 参考訳(メタデータ) (2023-03-31T09:48:16Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Application of Clustering Algorithms for Dimensionality Reduction in
Infrastructure Resilience Prediction Models [4.350783459690612]
本稿では,高次元の問題を同時に最小化し,機械学習モデルの予測精度を向上させるクラスタリング手法を提案する。
提案手法は,インフラストラクチャネットワークの障害後復旧のための意思決定支援ツールの開発に利用できる。
論文 参考訳(メタデータ) (2022-05-06T15:51:05Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Exponentially improved detection and correction of errors in
experimental systems using neural networks [0.0]
実験装置の実証モデルを作成するために,2つの機械学習アルゴリズムを導入する。
これにより、一般化最適化タスクに必要な測定回数を指数関数的に削減することができる。
イオントラップ内の成層電場の検出と補償を例に,両アルゴリズムを実証する。
論文 参考訳(メタデータ) (2020-05-18T22:42:11Z) - Efficient Characterization of Dynamic Response Variation Using
Multi-Fidelity Data Fusion through Composite Neural Network [9.446974144044733]
構造力学解析における多レベル応答予測の機会を利用する。
得られた多レベル異種データセットを完全に活用できる複合ニューラルネットワーク融合手法を定式化する。
論文 参考訳(メタデータ) (2020-05-07T02:44:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。