Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation
from Quantum Emitters
- URL: http://arxiv.org/abs/2205.03390v2
- Date: Fri, 11 Nov 2022 12:51:53 GMT
- Title: Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation
from Quantum Emitters
- Authors: Tim Seidelmann, Christian Schimpf, Thomas K. Bracht, Michael Cosacchi,
Alexei Vagov, Armando Rastelli, Doris E. Reiter, Vollrath Martin Axt
- Abstract summary: Entangled photon pairs are key to many novel applications in quantum technologies.
Semiconductor quantum dots can be used as sources of on-demand, highly entangled photons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entangled photon pairs are key to many novel applications in quantum
technologies. Semiconductor quantum dots can be used as sources of on-demand,
highly entangled photons. The fidelity to a fixed maximally entangled state is
limited by the excitonic fine-structure splitting. This work demonstrates that,
even if this splitting is absent, the degree of entanglement cannot reach unity
when the excitation pulse in a two-photon resonance scheme has a finite
duration. The degradation of the entanglement has its origin in a dynamically
induced splitting of the exciton states caused by the laser pulse itself.
Hence, in the setting explored here, the excitation process limits the
achievable concurrence for entangled photons generated in an optically excited
four-level quantum emitter.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Tunable phononic coupling in excitonic quantum emitters [6.510363316842893]
We report the deterministic creation of quantum emitters featuring highly tunable coupling between excitons and phonons.
The quantum emitters are formed in strain-induced quantum dots created in homobilayer semiconductor WSe2.
arXiv Detail & Related papers (2023-02-27T02:47:56Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Two-photon excitation with finite pulses unlocks pure dephasing-induced
degradation of entangled photons emitted by quantum dots [0.0]
Two-photon excitation limits the achievable degree of entanglement by introducing which-path information.
Two-photon excitation and longitudinal acoustic phonons on photon pairs emitted by strongly-confining quantum dots is investigated.
arXiv Detail & Related papers (2023-01-25T20:44:58Z) - Signatures of the Optical Stark Effect on Entangled Photon Pairs from
Resonantly-Pumped Quantum Dots [0.0]
Two-photon resonant excitation of the biexciton-exciton cascade in a quantum dot generates highly polarization-entangled photon pairs.
We observe the impact of the laser-induced AC-Stark effect on the quantum dot emission spectra and on entanglement.
arXiv Detail & Related papers (2022-12-14T08:21:44Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Photon-number entanglement generated by sequential excitation of a
two-level atom [0.0]
Entanglement and spontaneous emission are fundamental quantum phenomena that drive many applications of quantum physics.
Here, we show that this natural process can be used to produce photon-number entangled states of light distributed in time.
Our results on photon-number entanglement can be further exploited to generate new states of quantum light with applications in quantum technologies.
arXiv Detail & Related papers (2021-06-03T18:00:02Z) - Pulse shaping for on-demand emission of single Raman photons from a
quantum-dot biexciton [0.0]
We study single photon emission from an optically driven two-photon Raman transition between the biexciton and the ground state of a quantum dot.
The advantage of this process is that it allows all-optical control of the properties of the emitted single photon with a laser pulse.
We show that laser pulses with non-trivial shapes can be used to maintain excitation conditions for which with increasing pulse intensities the on-demand regime is reached.
arXiv Detail & Related papers (2021-04-28T14:12:56Z) - Strongly entangled system-reservoir dynamics with multiphoton pulses
beyond the two-excitation limit: Exciting the atom-photon bound state [62.997667081978825]
We study the non-Markovian feedback dynamics of a two-level system interacting with the electromagnetic field inside a semi-infinite waveguide.
We compare the trapped excitation for an initially excited quantum emitter and an emitter prepared via quantized pulses containing up to four photons.
arXiv Detail & Related papers (2020-11-07T12:56:16Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.