Signatures of the Optical Stark Effect on Entangled Photon Pairs from
Resonantly-Pumped Quantum Dots
- URL: http://arxiv.org/abs/2212.07087v3
- Date: Wed, 2 Aug 2023 13:54:20 GMT
- Title: Signatures of the Optical Stark Effect on Entangled Photon Pairs from
Resonantly-Pumped Quantum Dots
- Authors: Francesco Basso Basset, Michele B. Rota, Mattia Beccaceci, Tobias M.
Krieger, Quirin Buchinger, Julia Neuwirth, H\^elio Huet, Sandra Stroj, Saimon
F. Covre da Silva, Giuseppe Ronco, Christian Schimpf, Sven H\"ofling, Tobias
Huber-Loyola, Armando Rastelli, Rinaldo Trotta
- Abstract summary: Two-photon resonant excitation of the biexciton-exciton cascade in a quantum dot generates highly polarization-entangled photon pairs.
We observe the impact of the laser-induced AC-Stark effect on the quantum dot emission spectra and on entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-photon resonant excitation of the biexciton-exciton cascade in a quantum
dot generates highly polarization-entangled photon pairs in a
near-deterministic way. However, the ultimate level of achievable entanglement
is still debated. Here, we observe the impact of the laser-induced AC-Stark
effect on the quantum dot emission spectra and on entanglement. For increasing
pulse-duration/lifetime ratios and pump powers, decreasing values of
concurrence are recorded. Nonetheless, additional contributions are still
required to fully account for the observed below-unity concurrence.
Related papers
- Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Two-photon excitation with finite pulses unlocks pure dephasing-induced
degradation of entangled photons emitted by quantum dots [0.0]
Two-photon excitation limits the achievable degree of entanglement by introducing which-path information.
Two-photon excitation and longitudinal acoustic phonons on photon pairs emitted by strongly-confining quantum dots is investigated.
arXiv Detail & Related papers (2023-01-25T20:44:58Z) - Probing many-body correlations using quantum-cascade correlation
spectroscopy [0.0]
The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics.
Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved.
Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength.
arXiv Detail & Related papers (2022-12-18T09:51:12Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Collective Excitation of Spatio-Spectrally Distinct Quantum Dots Enabled
by Chirped Pulses [0.0]
We demonstrate the robustness of ARP for simultaneous excitation of the biexciton states of multiple quantum dots.
Being able to generate spatially multiplexed entangled photon pairs is a big step towards the scalability of photonic devices.
arXiv Detail & Related papers (2022-09-19T12:44:28Z) - Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation
from Quantum Emitters [0.0]
Entangled photon pairs are key to many novel applications in quantum technologies.
Semiconductor quantum dots can be used as sources of on-demand, highly entangled photons.
arXiv Detail & Related papers (2022-05-06T17:46:38Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.