Automatic segmentation of meniscus based on MAE self-supervision and
point-line weak supervision paradigm
- URL: http://arxiv.org/abs/2205.03525v1
- Date: Sat, 7 May 2022 02:57:50 GMT
- Title: Automatic segmentation of meniscus based on MAE self-supervision and
point-line weak supervision paradigm
- Authors: Yuhan Xie, Kexin Jiang, Zhiyong Zhang, Shaolong Chen, Xiaodong Zhang
and Changzhen Qiu
- Abstract summary: We introduce the self-supervised method MAE(Masked Autoencoders) into knee joint images to provide a good initial weight for the segmentation model.
Secondly, we propose a weakly supervised paradigm for meniscus segmentation based on the combination of point and line to reduce the time of labeling.
- Score: 2.445445375557563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation based on deep learning is often faced with the
problems of insufficient datasets and long time-consuming labeling. In this
paper, we introduce the self-supervised method MAE(Masked Autoencoders) into
knee joint images to provide a good initial weight for the segmentation model
and improve the adaptability of the model to small datasets. Secondly, we
propose a weakly supervised paradigm for meniscus segmentation based on the
combination of point and line to reduce the time of labeling. Based on the weak
label ,we design a region growing algorithm to generate pseudo-label. Finally
we train the segmentation network based on pseudo-labels with weight transfer
from self-supervision. Sufficient experimental results show that our proposed
method combining self-supervision and weak supervision can almost approach the
performance of purely fully supervised models while greatly reducing the
required labeling time and dataset size.
Related papers
- From Few to More: Scribble-based Medical Image Segmentation via Masked Context Modeling and Continuous Pseudo Labels [17.433808197776003]
We propose a weakly supervised framework designed for medical image segmentation.
MaCo employs masked context modeling and continuous pseudo labels.
We evaluate MaCo against other weakly supervised methods using three public datasets.
arXiv Detail & Related papers (2024-08-23T03:19:20Z) - Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud [69.36717778451667]
Existing methods for large-scale point cloud semantic segmentation require expensive, tedious and error-prone manual point-wise annotations.
We propose an effective weakly supervised method containing two components to solve the problem.
The experimental results show the large gain against existing weakly supervised and comparable results to fully supervised methods.
arXiv Detail & Related papers (2022-12-09T09:42:26Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Rapid model transfer for medical image segmentation via iterative
human-in-the-loop update: from labelled public to unlabelled clinical
datasets for multi-organ segmentation in CT [22.411929051477912]
This paper presents a novel and generic human-in-the-loop scheme for efficiently transferring a segmentation model from a small-scale labelled dataset to a larger-scale unlabelled dataset for multi-organ segmentation in CT.
The results show that our scheme can not only improve the performance by 19.7% on Dice, but also expedite the cost time of manual labelling from 13.87 min to 1.51 min per CT volume during the model transfer, demonstrating the clinical usefulness with promising potentials.
arXiv Detail & Related papers (2022-04-13T08:22:42Z) - Mind Your Clever Neighbours: Unsupervised Person Re-identification via
Adaptive Clustering Relationship Modeling [19.532602887109668]
Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models.
Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering.
To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID.
arXiv Detail & Related papers (2021-12-03T10:55:07Z) - Semi-weakly Supervised Contrastive Representation Learning for Retinal
Fundus Images [0.2538209532048867]
We propose a semi-weakly supervised contrastive learning framework for representation learning using semi-weakly annotated images.
We empirically validate the transfer learning performance of SWCL on seven public retinal fundus datasets.
arXiv Detail & Related papers (2021-08-04T15:50:09Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
We show that we can obtain state-of-the-art results using a semi-supervised approach, specifically a self-training paradigm.
We first train a teacher model on labeled data, and then generate pseudo labels on a large set of unlabeled data.
Our robust training framework can digest human-annotated and pseudo labels jointly and achieve top performances on Cityscapes, CamVid and KITTI datasets.
arXiv Detail & Related papers (2020-04-30T17:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.