Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation
- URL: http://arxiv.org/abs/2007.10242v1
- Date: Mon, 20 Jul 2020 16:29:32 GMT
- Title: Supervised Learning Using a Dressed Quantum Network with "Super
Compressed Encoding": Algorithm and Quantum-Hardware-Based Implementation
- Authors: Saurabh Kumar, Siddharth Dangwal and Debanjan Bhowmik
- Abstract summary: Implementation of variational Quantum Machine Learning (QML) algorithms on Noisy Intermediate-Scale Quantum (NISQ) devices has issues related to the high number of qubits needed and the noise associated with multi-qubit gates.
We propose a variational QML algorithm using a dressed quantum network to address these issues.
Unlike in most other existing QML algorithms, our quantum circuit consists only of single-qubit gates, making it robust against noise.
- Score: 7.599675376503671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implementation of variational Quantum Machine Learning (QML) algorithms on
Noisy Intermediate-Scale Quantum (NISQ) devices is known to have issues related
to the high number of qubits needed and the noise associated with multi-qubit
gates. In this paper, we propose a variational QML algorithm using a dressed
quantum network to address these issues. Using the "super compressed encoding"
scheme that we follow here, the classical encoding layer in our dressed network
drastically scales down the input-dimension, before feeding the input to the
variational quantum circuit. Hence, the number of qubits needed in our quantum
circuit goes down drastically. Also, unlike in most other existing QML
algorithms, our quantum circuit consists only of single-qubit gates, making it
robust against noise. These factors make our algorithm suitable for
implementation on NISQ hardware. To support our argument, we implement our
algorithm on real NISQ hardware and thereby show accurate classification using
popular machine learning data-sets like Fisher's Iris, Wisconsin's Breast
Cancer (WBC), and Abalone. Then, to provide an intuitive explanation for our
algorithm's working, we demonstrate the clustering of quantum states, which
correspond to the input-samples of different output-classes, on the Bloch
sphere (using WBC and MNIST data-sets). This clustering happens as a result of
the training process followed in our algorithm. Through this Bloch-sphere-based
representation, we also show the distinct roles played (in training) by the
adjustable parameters of the classical encoding layer and the adjustable
parameters of the variational quantum circuit. These parameters are adjusted
iteratively during training through loss-minimization.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Calibrating the role of entanglement in variational quantum circuits [0.6435156676256051]
Entanglement is a key property of quantum computing that separates it from its classical counterpart.
We systematically probe the role of entanglement in the working of two variational quantum algorithms.
We find that for the MAX-CUT problem solved using QAOA, the fidelity as a function of entanglement is highly dependent on the number of layers.
In the case of QNNs, trained circuits with high test accuracies are underpinned by higher entanglement, with any enforced limitation in entanglement resulting in a sharp decline in test accuracy.
arXiv Detail & Related papers (2023-10-16T23:36:40Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
We develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs)
We propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs.
In an image classification task, extensive simulations corroborate the effectiveness of eSQFL.
arXiv Detail & Related papers (2022-12-04T03:18:03Z) - Analog quantum variational embedding classifier [8.445680783099196]
We propose a gate-based variational embedding classifier based on an analog quantum computer.
We find the performance of our classifier can be increased by increasing the number of qubits until the performance saturates and fluctuates.
Our algorithm presents the possibility of using current quantum annealers for solving practical machine-learning problems.
arXiv Detail & Related papers (2022-11-04T20:58:48Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Quantum Neuron with Separable-State Encoding [0.0]
It is not yet possible to test advanced quantum neuron models on a large scale in currently available quantum processors.
We propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates.
We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer.
arXiv Detail & Related papers (2022-02-16T19:26:23Z) - Variational Quantum Eigensolver with Reduced Circuit Complexity [3.1158760235626946]
We present a novel approach to reduce quantum circuit complexity in VQE for electronic structure calculations.
Our algorithm, called ClusterVQE, splits the initial qubit space into subspaces (qubit clusters) which are further distributed on individual quantum circuits.
The new algorithm simultaneously reduces the number of qubits and circuit depth, making it a potential leader for quantum chemistry simulations on NISQ devices.
arXiv Detail & Related papers (2021-06-14T17:23:46Z) - Fast-Forwarding with NISQ Processors without Feedback Loop [0.0]
We present the Classical Quantum Fast Forwarding (CQFF) as an alternative diagonalisation based algorithm for quantum simulation.
CQFF removes the need for a classical-quantum feedback loop and controlled multi-qubit unitaries.
Our work provides a $104$ improvement over the previous record.
arXiv Detail & Related papers (2021-04-05T14:29:33Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.