FP-GNN: a versatile deep learning architecture for enhanced molecular
property prediction
- URL: http://arxiv.org/abs/2205.03834v1
- Date: Sun, 8 May 2022 10:36:12 GMT
- Title: FP-GNN: a versatile deep learning architecture for enhanced molecular
property prediction
- Authors: Hanxuan Cai, Huimin Zhang, Duancheng Zhao, Jingxing Wu, Ling Wang
- Abstract summary: FP-GNN is a novel deep learning architecture that combined and simultaneously learned information from molecular graphs and fingerprints.
We conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset, and 14 phenotypic screening datasets for breast cell lines.
The FP-GNN algorithm achieved state-of-the-art performance on these datasets.
- Score: 3.9838024725595167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is an important method for molecular design and exhibits
considerable ability to predict molecular properties, including
physicochemical, bioactive, and ADME/T (absorption, distribution, metabolism,
excretion, and toxicity) properties. In this study, we advanced a novel deep
learning architecture, termed FP-GNN, which combined and simultaneously learned
information from molecular graphs and fingerprints. To evaluate the FP-GNN
model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA
dataset, and 14 phenotypic screening datasets for breast cell lines. Extensive
evaluation results showed that compared to advanced deep learning and
conventional machine learning algorithms, the FP-GNN algorithm achieved
state-of-the-art performance on these datasets. In addition, we analyzed the
influence of different molecular fingerprints, and the effects of molecular
graphs and molecular fingerprints on the performance of the FP-GNN model.
Analysis of the anti-noise ability and interpretation ability also indicated
that FP-GNN was competitive in real-world situations.
Related papers
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
We introduce the textbf Structural Similarity Motif GNN (MSSM-GNN), a novel molecular graph representation learning method.
In particular, we propose a specially designed graph that leverages graph kernel algorithms to represent the similarity between molecules quantitatively.
We employ GNNs to learn feature representations from molecular graphs, aiming to enhance the accuracy of property prediction by incorporating additional molecular representation information.
arXiv Detail & Related papers (2024-09-13T06:59:10Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations [3.10678679607547]
The goal of this study is to develop a general model capable of predicting the solubility of a broad range of organic molecules.
Using the largest currently available solubility dataset, we implement deep learning-based models to predict solubility from molecular structure.
We find that models using molecular descriptors achieve the best performance, with GNN models also achieving good performance.
arXiv Detail & Related papers (2021-05-26T15:54:54Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.