Site Generalization: Stroke Lesion Segmentation on Magnetic Resonance
Images from Unseen Sites
- URL: http://arxiv.org/abs/2205.04329v1
- Date: Mon, 9 May 2022 14:33:06 GMT
- Title: Site Generalization: Stroke Lesion Segmentation on Magnetic Resonance
Images from Unseen Sites
- Authors: Weiyi Yu, Zhizhong Huang, Junping Zhang, Hongming Shan
- Abstract summary: Strokes are the main cause of various cerebrovascular diseases.
Deep learning-based models have been proposed for this task, but generalizing these models to unseen sites is difficult.
We propose a U-net--based segmentation network termed SG-Net to improve unseen site generalization for stroke lesion segmentation on MR images.
- Score: 40.32385363670918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There are considerable interests in automatic stroke lesion segmentation on
magnetic resonance (MR) images in the medical imaging field, as strokes are the
main cause of various cerebrovascular diseases. Although deep learning-based
models have been proposed for this task, generalizing these models to unseen
sites is difficult due to not only the large intersite discrepancy among
different scanners, imaging protocols, and populations but also the variations
in stroke lesion shape, size, and location. Thus, we propose a U-net--based
segmentation network termed SG-Net to improve unseen site generalization for
stroke lesion segmentation on MR images. Specifically, we first propose masked
adaptive instance normalization (MAIN) to minimize intersite discrepancies,
standardizing input MR images from different sites into a site-unrelated style
by dynamically learning affine parameters from the input. Then, we leverage a
gradient reversal layer to force the U-net encoder to learn site-invariant
representation, which further improves the model generalization in conjunction
with MAIN. Finally, inspired by the "pseudosymmetry" of the human brain, we
introduce a simple, yet effective data augmentation technique that can be
embedded within SG-Net to double the sample size while halving memory
consumption. As a result, stroke lesions from the whole brain can be easily
identified within a hemisphere, improving the simplicity of training.
Experimental results on the benchmark Anatomical Tracings of Lesions After
Stroke (ATLAS) dataset, which includes MR images from 9 different sites,
demonstrate that under the "leave-one-site-out" setting, the proposed SG-Net
substantially outperforms recently published methods in terms of quantitative
metrics and qualitative comparisons.
Related papers
- MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation [3.2846676620336632]
Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis.
Transformer-based models address these limitations but introduce substantial computational overhead.
We introduce MM-UNet, an efficient Mixed model tailored for ophthalmic image segmentation.
arXiv Detail & Related papers (2024-08-16T08:34:50Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - FAN-Net: Fourier-Based Adaptive Normalization For Cross-Domain Stroke
Lesion Segmentation [17.150527504559594]
We propose a novel FAN-Net, a U-Net-based segmentation network incorporated with a Fourier-based adaptive normalization (FAN)
The experimental results on the ATLAS dataset, which consists of MR images from 9 sites, show the superior performance of the proposed FAN-Net compared with baseline methods.
arXiv Detail & Related papers (2023-04-23T06:58:21Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image
Segmentation [21.6412682130116]
We propose a novel group equivariant segmentation framework by encoding those inherent symmetries for learning more precise representations.
Based on our novel framework, extensive experiments conducted on real-world clinical data demonstrate that a Group Equivariant Res-UNet (named GER-UNet) outperforms its regular CNN-based counterpart.
The newly built GER-UNet also shows potential in reducing the sample complexity and the redundancy of filters.
arXiv Detail & Related papers (2022-07-29T04:28:20Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - Segmentation-Renormalized Deep Feature Modulation for Unpaired Image
Harmonization [0.43012765978447565]
Cycle-consistent Generative Adversarial Networks have been used to harmonize image sets between a source and target domain.
These methods are prone to instability, contrast inversion, intractable manipulation of pathology, and steganographic mappings which limit their reliable adoption in real-world medical imaging.
We propose a segmentation-renormalized image translation framework to reduce inter-scanner harmonization while preserving anatomical layout.
arXiv Detail & Related papers (2021-02-11T23:53:51Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Multi-structure bone segmentation in pediatric MR images with combined
regularization from shape priors and adversarial network [0.4588028371034407]
We propose a new pre-trained regularized convolutional encoder-decoder network for the challenging task of segmenting heterogeneous pediatric magnetic resonance (MR) images.
In order to obtain globally consistent predictions, we incorporate a shape priors based regularization, derived from a non-linear shape representation learnt by an auto-encoder.
The proposed method performed either better or at par with previously proposed approaches for Dice, sensitivity, specificity, maximum symmetric surface distance, average symmetric surface distance, and relative absolute volume difference metrics.
arXiv Detail & Related papers (2020-09-15T13:39:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.