Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision
for Precision Pollination
- URL: http://arxiv.org/abs/2205.04675v1
- Date: Tue, 10 May 2022 05:11:28 GMT
- Title: Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision
for Precision Pollination
- Authors: Malika Nisal Ratnayake, Don Chathurika Amarathunga, Asaduz Zaman,
Adrian G. Dyer, Alan Dorin
- Abstract summary: Insects are the most important global pollinator of crops and play a key role in maintaining the sustainability of natural ecosystems.
Current computer vision facilitated insect tracking in complex outdoor environments is restricted in spatial coverage.
This article introduces a novel system to facilitate markerless data capture for insect counting, insect motion tracking, behaviour analysis and pollination prediction.
- Score: 6.2997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insects are the most important global pollinator of crops and play a key role
in maintaining the sustainability of natural ecosystems. Insect pollination
monitoring and management are therefore essential for improving crop production
and food security. Computer vision facilitated pollinator monitoring can
intensify data collection over what is feasible using manual approaches. The
new data it generates may provide a detailed understanding of insect
distributions and facilitate fine-grained analysis sufficient to predict their
pollination efficacy and underpin precision pollination. Current computer
vision facilitated insect tracking in complex outdoor environments is
restricted in spatial coverage and often constrained to a single insect
species. This limits its relevance to agriculture. Therefore, in this article
we introduce a novel system to facilitate markerless data capture for insect
counting, insect motion tracking, behaviour analysis and pollination prediction
across large agricultural areas. Our system is comprised of Edge Computing
multi-point video recording, offline automated multi-species insect counting,
tracking and behavioural analysis. We implement and test our system on a
commercial berry farm to demonstrate its capabilities. Our system successfully
tracked four insect varieties, at nine monitoring stations within a
poly-tunnel, obtaining an F-score above 0.8 for each variety. The system
enabled calculation of key metrics to assess the relative pollination impact of
each insect variety. With this technological advancement, detailed, ongoing
data collection for precision pollination becomes achievable. This is important
to inform growers and apiarists managing crop pollination, as it allows
data-driven decisions to be made to improve food production and food security.
Related papers
- Self-supervised transformer-based pre-training method with General Plant Infection dataset [3.969851116372513]
This study proposes an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM)
The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy.
Our code and dataset will be publicly available to advance research in plant pest and disease recognition.
arXiv Detail & Related papers (2024-07-20T15:48:35Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
optimisation is required for insect production to realise its full potential.
This can be by targeted improvement of traits of interest through selective breeding.
This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology.
arXiv Detail & Related papers (2024-06-26T07:50:58Z) - Insect Identification in the Wild: The AMI Dataset [35.41544843896443]
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing.
Despite this crisis, data on insect diversity and abundance remain woefully inadequate.
We provide the first large-scale machine learning benchmarks for fine-grained insect recognition.
arXiv Detail & Related papers (2024-06-18T09:57:02Z) - Unleashing the Power of Transfer Learning Model for Sophisticated Insect Detection: Revolutionizing Insect Classification [0.520707246175575]
This study uses different models like MobileNetV2, ResNet152V2, Xecption, Custom CNN.
A Convolutional Neural Network (CNN) based on the ResNet152V2 architecture is constructed and evaluated in this work.
The results highlight its potential for real-world applications in insect classification and entomology studies.
arXiv Detail & Related papers (2024-06-11T20:52:42Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNet can identify invasive species, provide fine-grained insect species identification, and work effectively in challenging backgrounds.
It can also abstain from making predictions when uncertain, facilitating seamless human intervention and making it a practical and trustworthy tool.
arXiv Detail & Related papers (2023-06-04T23:56:53Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
This work presents the first large-scale pollen grain image dataset, including more than 13 thousands objects.
The paper focuses on the employed data acquisition steps, which include aerobiological sampling, microscope image acquisition, object detection, segmentation and labelling.
arXiv Detail & Related papers (2020-07-09T10:33:31Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.