論文の概要: Shadow-Aware Dynamic Convolution for Shadow Removal
- arxiv url: http://arxiv.org/abs/2205.04908v1
- Date: Tue, 10 May 2022 14:00:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 20:30:03.144740
- Title: Shadow-Aware Dynamic Convolution for Shadow Removal
- Title(参考訳): 影除去のための影認識動的畳み込み
- Authors: Yimin Xu, Mingbao Lin, Hong Yang, Ke Li, Yunhang Shen, Fei Chao,
Rongrong Ji
- Abstract要約: シャドウ領域と非シャドウ領域間の相互依存を分離するための新しいシャドウ・アウェア・ダイナミック・コンボリューション(SADC)モジュールを提案する。
我々のSADCは、非シャドウ領域の色マッピングが学習しやすいという事実に触発され、軽量な畳み込みモジュールで非シャドウ領域を処理する。
我々は,非シャドウ地域からシャドウ地域への情報フローを強化するために,新しいコンボリューション内蒸留損失を開発した。
- 参考スコア(独自算出の注目度): 80.82708225269684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With a wide range of shadows in many collected images, shadow removal has
aroused increasing attention since uncontaminated images are of vital
importance for many downstream multimedia tasks. Current methods consider the
same convolution operations for both shadow and non-shadow regions while
ignoring the large gap between the color mappings for the shadow region and the
non-shadow region, leading to poor quality of reconstructed images and a heavy
computation burden. To solve this problem, this paper introduces a novel
plug-and-play Shadow-Aware Dynamic Convolution (SADC) module to decouple the
interdependence between the shadow region and the non-shadow region. Inspired
by the fact that the color mapping of the non-shadow region is easier to learn,
our SADC processes the non-shadow region with a lightweight convolution module
in a computationally cheap manner and recovers the shadow region with a more
complicated convolution module to ensure the quality of image reconstruction.
Given that the non-shadow region often contains more background color
information, we further develop a novel intra-convolution distillation loss to
strengthen the information flow from the non-shadow region to the shadow
region. Extensive experiments on the ISTD and SRD datasets show our method
achieves better performance in shadow removal over many state-of-the-arts. Our
code is available at https://github.com/xuyimin0926/SADC.
- Abstract(参考訳): 多くの収集画像に広範囲の影があるため、未汚染画像が多くの下流マルチメディアタスクにおいて重要な意味を持つため、影の除去が注目を集めている。
現在の方法では、影領域と非陰影領域のカラーマッピングと非陰影領域の間の大きなギャップを無視しながら、影領域と非陰影領域の両方の同じ畳み込み操作を考慮し、再構成画像の品質が低下し、計算負荷が重い。
そこで本研究では,シャドウ領域と非シャドウ領域との相互依存を分離するための,新しいプラグアンドプレイ型シャドウ・アウェア・ダイナミック・コンボリューション(SADC)モジュールを提案する。
我々のSADCは、非陰影領域の色マッピングが学習が容易であるという事実に着想を得て、軽量な畳み込みモジュールで非陰影領域を計算的に安価に処理し、より複雑な畳み込みモジュールで影領域を復元し、画像再構成の品質を確保する。
また,非シャドウ領域には背景色情報が多く含まれることから,非シャドウ領域からシャドウ領域への情報フローを強化するため,新たにコンボリューション内蒸留損失が生じた。
ISTDおよびSRDデータセットの大規模な実験により,多くの最先端技術に対する影除去性能の向上が示された。
私たちのコードはhttps://github.com/xuyimin0926/SADCで利用可能です。
関連論文リスト
- ShadowMamba: State-Space Model with Boundary-Region Selective Scan for Shadow Removal [3.5734732877967392]
本稿では境界領域選択走査と呼ばれる新しい選択的走査法を提案する。
私たちのモデルであるShadowMambaは、シャドウ除去のための最初のMambaベースのモデルです。
論文 参考訳(メタデータ) (2024-11-05T16:59:06Z) - Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
影のパターンは任意で変化しており、しばしば非常に複雑な痕跡構造を持つ。
影による劣化は空間的に不均一であり、照度と影と非陰影領域間の色に矛盾が生じている。
この分野での最近の開発は、主にディープラーニングベースのソリューションによって進められている。
論文 参考訳(メタデータ) (2024-07-11T20:58:38Z) - Delving into Dark Regions for Robust Shadow Detection [47.60700654394781]
最先端のディープメソッドは、暗黒領域の非シャドウピクセルとシャドウピクセルを区別する際のエラー率が高い傾向にある。
そこで我々は,まず画像全体を通してグローバルな文脈的手がかりを学習し,次に暗黒領域に拡大して局所的な影表現を学習する,新しいシャドウ検出手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T09:07:07Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
シングルイメージのシャドー削除は、まだ解決されていない重要なタスクである。
既存のディープラーニングベースのアプローチのほとんどは、シャドウを直接削除しようとするが、シャドウをうまく扱えない。
本稿では,影を段階的に除去する簡易かつ効果的なプログレッシブ・リカレント・ネットワーク(PRNet)を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:42:45Z) - Learning Restoration is Not Enough: Transfering Identical Mapping for
Single-Image Shadow Removal [19.391619888009064]
最先端のシャドウ除去方法は、収集されたシャドウとシャドウフリーの画像ペアでディープニューラルネットワークを訓練する。
2つのタスクは互換性が低く、これらの2つのタスクの共有重み付けを使用することで、モデルが1つのタスクに最適化される可能性がある。
本稿では,これら2つのタスクを個別に処理し,同一のマッピング結果を利用して,影の復元を反復的に導くことを提案する。
論文 参考訳(メタデータ) (2023-05-18T01:36:23Z) - ShadowFormer: Global Context Helps Image Shadow Removal [41.742799378751364]
シャドウ領域と非シャドウ領域のグローバルな文脈的相関を利用して、ディープシャドウ除去モデルを構築することは依然として困難である。
そこで我々はまず、ShandowFormerと呼ばれる新しいトランスフォーマーベースのネットワークを導出するRetinexベースのシャドウモデルを提案する。
グローバル情報を階層的にキャプチャするために,マルチスケールチャネルアテンションフレームワークが使用される。
本稿では,影と非陰影領域のコンテキスト相関を効果的にモデル化するために,影の相互作用を考慮したSIM(Shadow-Interaction Module)を提案する。
論文 参考訳(メタデータ) (2023-02-03T10:54:52Z) - Shadow Removal by High-Quality Shadow Synthesis [78.56549207362863]
HQSSでは、擬似画像を合成するためにシャドウ機能エンコーダとジェネレータを使用している。
HQSSは、ISTDデータセット、ビデオシャドウ除去データセット、SRDデータセットの最先端メソッドよりも優れたパフォーマンスを発揮する。
論文 参考訳(メタデータ) (2022-12-08T06:52:52Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
本稿では,文書陰影除去のためのトランスフォーマーモデルを提案する。
シャドウとシャドウフリーの両方の領域で、シャドウコンテキストエンコーディングとデコードを使用する。
論文 参考訳(メタデータ) (2022-11-30T01:46:29Z) - CNSNet: A Cleanness-Navigated-Shadow Network for Shadow Removal [4.951051823391577]
シャドウマスクをベースとした,シャドウ指向適応正規化(SOAN)モジュールとトランスフォーマー(SAAT)モジュールを用いたシャドウ対応アグリゲーションを提案する。
シャドウマスクのガイダンスの下で、SOANモジュールは非シャドウ領域の統計を定式化し、それらを領域的な復元のためにシャドウ領域に適応的に適用する。
SAATモジュールは、シャドウフリー領域から高関連性の高い画素を考慮し、シャドウマスクを用いて各シャドウ画素の復元を正確にガイドする。
論文 参考訳(メタデータ) (2022-09-06T01:33:38Z) - CRFormer: A Cross-Region Transformer for Shadow Removal [27.67680052355886]
影除去のための新しいクロスリージョントランス、CRFormerを提案する。
これは、慎重に設計された地域対応のクロスアテンション操作によって実現される。
ISTD, AISTD, SRD, およびビデオシャドウ除去データセットの実験により, 本手法の優位性を実証した。
論文 参考訳(メタデータ) (2022-07-04T17:33:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。