Robust Data-Driven Output Feedback Control via Bootstrapped
Multiplicative Noise
- URL: http://arxiv.org/abs/2205.05119v1
- Date: Tue, 10 May 2022 18:47:14 GMT
- Title: Robust Data-Driven Output Feedback Control via Bootstrapped
Multiplicative Noise
- Authors: Benjamin Gravell, Iman Shames, Tyler Summers
- Abstract summary: We propose a robust data-driven output feedback control algorithm that explicitly incorporates inherent finite-sample model estimate uncertainties into the control design.
A key advantage of the proposed approach is that the system identification and robust control design procedures both use uncertainty representations.
We show through numerical experiments that the proposed robust data-driven output feedback controller can significantly outperform a certainty equivalent controller.
- Score: 1.0312968200748118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a robust data-driven output feedback control algorithm that
explicitly incorporates inherent finite-sample model estimate uncertainties
into the control design. The algorithm has three components: (1) a subspace
identification nominal model estimator; (2) a bootstrap resampling method that
quantifies non-asymptotic variance of the nominal model estimate; and (3) a
non-conventional robust control design method comprising a coupled optimal
dynamic output feedback filter and controller with multiplicative noise. A key
advantage of the proposed approach is that the system identification and robust
control design procedures both use stochastic uncertainty representations, so
that the actual inherent statistical estimation uncertainty directly aligns
with the uncertainty the robust controller is being designed against. Moreover,
the control design method accommodates a highly structured uncertainty
representation that can capture uncertainty shape more effectively than
existing approaches. We show through numerical experiments that the proposed
robust data-driven output feedback controller can significantly outperform a
certainty equivalent controller on various measures of sample complexity and
stability robustness.
Related papers
- Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
Capturing uncertainty in models of complex dynamical systems is crucial to designing safe controllers.
Several approaches use formal abstractions to synthesize policies that satisfy temporal specifications related to safety and reachability.
Our contribution is a novel abstraction-based controller method for continuous-state models with noise, uncertain parameters, and external disturbances.
arXiv Detail & Related papers (2022-10-12T07:57:03Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
We propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together.
The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees.
arXiv Detail & Related papers (2022-03-09T01:55:59Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Robust Data-Driven Predictive Control using Reachability Analysis [6.686241050151697]
We present a robust data-driven control scheme for unknown linear systems with a bounded process and measurement noise.
The data-driven reachable regions are computed based on only noisy input-output data of a trajectory of the system.
In the noise-free case, we prove that the presented purely data-driven control scheme results in an equivalent closed-loop behavior to a nominal model predictive control scheme.
arXiv Detail & Related papers (2021-03-25T19:55:15Z) - The Impact of Data on the Stability of Learning-Based Control- Extended
Version [63.97366815968177]
We propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance.
By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions.
arXiv Detail & Related papers (2020-11-20T19:10:01Z) - Robust Learning-Based Control via Bootstrapped Multiplicative Noise [0.0]
We propose a robust adaptive control algorithm that explicitly incorporates such non-asymptotic uncertainties into the control design.
A key advantage of the proposed approach is that the system identification and robust control design procedures both use uncertainty representations.
arXiv Detail & Related papers (2020-02-24T04:12:52Z) - Optimistic robust linear quadratic dual control [4.94950858749529]
We present a dual control strategy that attempts to combine the performance of certainty equivalence, with the practical utility of robustness.
The formulation preserves structure in the representation of parametric uncertainty, which allows the controller to target reduction of uncertainty in the parameters that matter most' for the control task.
arXiv Detail & Related papers (2019-12-31T02:02:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.