論文の概要: Study on the Helpfulness of Explainable Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2410.11896v1
- Date: Mon, 14 Oct 2024 14:03:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:29.020991
- Title: Study on the Helpfulness of Explainable Artificial Intelligence
- Title(参考訳): 説明可能な人工知能の有効性に関する研究
- Authors: Tobias Labarta, Elizaveta Kulicheva, Ronja Froelian, Christian Geißler, Xenia Melman, Julian von Klitzing,
- Abstract要約: 法律、ビジネス、倫理的要件は、効果的なXAIの使用を動機付けている。
本稿では,ユーザがプロキシタスクをうまく実行する能力を通じて,XAI手法を評価することを提案する。
言い換えれば、人間の意思決定におけるXAIの有用性について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Explainable Artificial Intelligence (XAI) is essential for building advanced machine learning-powered applications, especially in critical domains such as medical diagnostics or autonomous driving. Legal, business, and ethical requirements motivate using effective XAI, but the increasing number of different methods makes it challenging to pick the right ones. Further, as explanations are highly context-dependent, measuring the effectiveness of XAI methods without users can only reveal a limited amount of information, excluding human factors such as the ability to understand it. We propose to evaluate XAI methods via the user's ability to successfully perform a proxy task, designed such that a good performance is an indicator for the explanation to provide helpful information. In other words, we address the helpfulness of XAI for human decision-making. Further, a user study on state-of-the-art methods was conducted, showing differences in their ability to generate trust and skepticism and the ability to judge the rightfulness of an AI decision correctly. Based on the results, we highly recommend using and extending this approach for more objective-based human-centered user studies to measure XAI performance in an end-to-end fashion.
- Abstract(参考訳): 説明可能な人工知能(XAI)は、特に医療診断や自律運転といった重要な領域において、高度な機械学習駆動アプリケーションを構築するために不可欠である。
法的、ビジネス的、倫理的な要件は、効果的なXAIを使うことを動機付けていますが、さまざまな方法が増えているため、正しいものを選ぶのは困難です。
さらに、説明が文脈に依存しているため、ユーザがいない場合のXAI手法の有効性は、理解する能力などの人的要因を除いて、限られた情報しか明らかにできない。
本稿では,ユーザがプロキシタスクを成功させる能力を通じて,XAI手法を評価することを提案する。
言い換えれば、人間の意思決定におけるXAIの有用性について論じる。
さらに,信頼と懐疑性を生み出す能力と,AI決定の正しさを正しく判断する能力の相違を示す,最先端の手法に関するユーザスタディを行った。
これらの結果から,より客観的な人間中心型ユーザスタディにおいて,XAIのパフォーマンスをエンドツーエンドで測定するために,このアプローチの利用と拡張を強く推奨する。
関連論文リスト
- How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - Impact Of Explainable AI On Cognitive Load: Insights From An Empirical
Study [0.0]
本研究は、新型コロナウイルスのユースケースを用いて、実装に依存しないXAI説明型の認知負荷、タスクパフォーマンス、タスク時間を測定する。
これらの説明型は, エンドユーザの認知負荷, タスクパフォーマンス, タスク時間に強く影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:52:09Z) - Invisible Users: Uncovering End-Users' Requirements for Explainable AI
via Explanation Forms and Goals [19.268536451101912]
非技術者のエンドユーザは、最先端の説明可能な人工知能(XAI)技術のサイレントで目に見えないユーザです。
それらのAI説明可能性に対する要求と要求は、XAI技術の設計と評価には組み込まれていない。
これにより、XAI技術は、医療、刑事司法、金融、自動運転システムといった、高額な応用において非効率または有害である。
論文 参考訳(メタデータ) (2023-02-10T19:35:57Z) - Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal [0.0]
本研究は、説明可能な機械学習(XML)における既存の研究の徹底的なレビューを行う。
我々の主な目的は、XMLの領域内でXAIメソッドの分類を提供することです。
本稿では,ユーザとその所望のプロパティを考慮に入れたマッピング関数を提案し,XAI手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T01:06:38Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Transcending XAI Algorithm Boundaries through End-User-Inspired Design [27.864338632191608]
エンドユーザに対する説明責任重視の機能サポートの欠如は、高度なドメインにおけるAIの安全で責任ある使用を妨げる可能性がある。
我々の研究は、エンドユーザーがXAIを使用する際の技術的な問題を根底から解決することで、新たな研究課題がもたらされることを示している。
このようなエンドユーザにインスパイアされた研究質問は、AIを民主化し、クリティカルドメインにおけるAIの責任ある使用を保証することによって、社会的善を促進できる可能性がある。
論文 参考訳(メタデータ) (2022-08-18T09:44:51Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - A Comparative Approach to Explainable Artificial Intelligence Methods in
Application to High-Dimensional Electronic Health Records: Examining the
Usability of XAI [0.0]
XAIは、コミュニケーション手段によって人間に達成される信頼の実証的要因を生み出すことを目的としている。
機械を信頼して人間の生き方に向くというイデオロギーは倫理的な混乱を引き起こします。
XAIメソッドは、ローカルレベルとグローバルレベルの両方で出力される特定のモデルに対する機能貢献を視覚化します。
論文 参考訳(メタデータ) (2021-03-08T18:15:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。