論文の概要: Robustness of Humans and Machines on Object Recognition with Extreme
Image Transformations
- arxiv url: http://arxiv.org/abs/2205.05167v1
- Date: Mon, 9 May 2022 17:15:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-15 02:57:43.161380
- Title: Robustness of Humans and Machines on Object Recognition with Extreme
Image Transformations
- Title(参考訳): 極端画像変換を用いた物体認識における人間と機械のロバスト性
- Authors: Dakarai Crowder and Girik Malik
- Abstract要約: 物体認識タスクにおいて、画像変換の新たなセットを導入し、人間とネットワークの評価を行う。
人間は高い精度で物体を認識できる一方で、いくつかの共通ネットワークの性能は急速に低下することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent neural network architectures have claimed to explain data from the
human visual cortex. Their demonstrated performance is however still limited by
the dependence on exploiting low-level features for solving visual tasks. This
strategy limits their performance in case of out-of-distribution/adversarial
data. Humans, meanwhile learn abstract concepts and are mostly unaffected by
even extreme image distortions. Humans and networks employ strikingly different
strategies to solve visual tasks. To probe this, we introduce a novel set of
image transforms and evaluate humans and networks on an object recognition
task. We found performance for a few common networks quickly decreases while
humans are able to recognize objects with a high accuracy.
- Abstract(参考訳): 最近のニューラルネットワークアーキテクチャは、人間の視覚皮質からのデータを説明すると主張している。
しかしながら、彼らの実証されたパフォーマンスは、視覚的なタスクを解決するための低レベル機能の利用に依存しているため、依然として制限されている。
この戦略は、分散/逆データの場合のパフォーマンスを制限する。
一方、人間は抽象概念を学び、極端に画像の歪みの影響を受けない。
人間とネットワークは視覚的なタスクを解決するために驚くほど異なる戦略を採用している。
そこで本研究では,新しい画像変換セットを導入し,物体認識タスクにおける人間とネットワークの評価を行う。
人間は高い精度で物体を認識できる一方で、いくつかの共通ネットワークの性能は急速に低下することがわかった。
関連論文リスト
- Saliency Suppressed, Semantics Surfaced: Visual Transformations in Neural Networks and the Brain [0.0]
私たちは神経科学からインスピレーションを得て、ニューラルネットワークが情報を低(視覚的満足度)で高(セマンティックな類似性)の抽象レベルでエンコードする方法について光を当てています。
ResNetsは、オブジェクト分類の目的によって訓練された場合、ViTsよりも唾液度情報に敏感であることが分かりました。
我々は、セマンティックエンコーディングがAIと人間の視覚知覚を協調させる重要な要素であることを示し、サリエンシ抑制は非脳的な戦略であることを示した。
論文 参考訳(メタデータ) (2024-04-29T15:05:42Z) - Degraded Polygons Raise Fundamental Questions of Neural Network Perception [5.423100066629618]
我々は、30年以上前に人間の視覚の認識・コンポーネント理論で導入された、劣化中の画像の復元作業を再考する。
周辺劣化した正多角形の大規模データセットを高速に生成するための自動形状復元テストを実装した。
この単純なタスクにおけるニューラルネットワークの振舞いは、人間の振舞いと矛盾する。
論文 参考訳(メタデータ) (2023-06-08T06:02:39Z) - Connecting metrics for shape-texture knowledge in computer vision [1.7785095623975342]
深層ニューラルネットワークは、人間が画像の分類ミスを起こさないような、画像の多くの変化の影響を受けやすいままである。
この異なる振る舞いの一部は、視覚タスクで人間とディープニューラルネットワークが使用する機能の種類によって説明できるかもしれない。
論文 参考訳(メタデータ) (2023-01-25T14:37:42Z) - Extreme Image Transformations Affect Humans and Machines Differently [0.0]
最近の人工ニューラルネットワーク(ANN)では、霊長類ニューラルネットと人間のパフォーマンスデータの側面をモデル化している。
神経生理学的な知見にインスパイアされた新しい画像変換のセットを導入し、物体認識タスクにおいて人間とANNを評価する。
機械は、特定の変換のために人間よりも優れた性能を示し、人間にとって容易な他者と同等の性能を発揮するのに苦労する。
論文 参考訳(メタデータ) (2022-11-30T18:12:53Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
本稿では,ある絵画の視覚的体験における視聴者の眼球運動分析に焦点を当てた。
我々は、人間の視覚的注意を予測するための新しいアプローチを導入し、人間の認知機能に影響を及ぼす。
提案した新しいアーキテクチャは、画像を取り込んでスキャンパスを返す。
論文 参考訳(メタデータ) (2022-09-22T22:27:08Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Towards robust vision by multi-task learning on monkey visual cortex [6.9014416935919565]
我々は,深部ネットワークを併用して画像分類を行い,マカク一次視覚野(V1)の神経活動を予測する訓練を行った。
その結果,モンキーV1データによるコトレーニングは,トレーニング中に歪みがないにもかかわらず,ロバスト性の向上につながることがわかった。
また、ネットワークの堅牢性が向上するにつれて、ネットワークの表現がより脳に似たものになることを示した。
論文 参考訳(メタデータ) (2021-07-29T21:55:48Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z) - Exploiting Semantics for Face Image Deblurring [121.44928934662063]
本稿では,深層畳み込みニューラルネットワークによる意味的手がかりを利用して,効果的かつ効率的な顔分解アルゴリズムを提案する。
顔のセマンティックラベルを入力先として組み込んで,顔の局所構造を正規化するための適応的構造損失を提案する。
提案手法は、より正確な顔の特徴と細部を持つシャープ画像を復元する。
論文 参考訳(メタデータ) (2020-01-19T13:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。