論文の概要: Efficient Distributed Framework for Collaborative Multi-Agent
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2205.05248v1
- Date: Wed, 11 May 2022 03:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 18:13:06.115043
- Title: Efficient Distributed Framework for Collaborative Multi-Agent
Reinforcement Learning
- Title(参考訳): 協調型マルチエージェント強化学習のための分散フレームワーク
- Authors: Shuhan Qi, Shuhao Zhang, Xiaohan Hou, Jiajia Zhang, Xuan Wang, Jing
Xiao
- Abstract要約: 不完全な情報環境に対するマルチエージェント強化学習は研究者から広く注目を集めている。
不安定なモデルイテレーションや訓練効率の低下など、マルチエージェント強化学習には依然としていくつかの問題がある。
本稿では,アクター-ワーク-ラーナーアーキテクチャに基づく分散MARLフレームワークを設計する。
- 参考スコア(独自算出の注目度): 17.57163419315147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent reinforcement learning for incomplete information environments
has attracted extensive attention from researchers. However, due to the slow
sample collection and poor sample exploration, there are still some problems in
multi-agent reinforcement learning, such as unstable model iteration and low
training efficiency. Moreover, most of the existing distributed framework are
proposed for single-agent reinforcement learning and not suitable for
multi-agent. In this paper, we design an distributed MARL framework based on
the actor-work-learner architecture. In this framework, multiple asynchronous
environment interaction modules can be deployed simultaneously, which greatly
improves the sample collection speed and sample diversity. Meanwhile, to make
full use of computing resources, we decouple the model iteration from
environment interaction, and thus accelerate the policy iteration. Finally, we
verified the effectiveness of propose framework in MaCA military simulation
environment and the SMAC 3D realtime strategy gaming environment with
imcomplete information characteristics.
- Abstract(参考訳): 不完全な情報環境に対するマルチエージェント強化学習は研究者の注目を集めている。
しかし, サンプル収集が遅く, サンプル探索が不十分なため, 不安定なモデルイテレーションや訓練効率の低下など, マルチエージェント強化学習の課題がまだ残っている。
さらに、既存の分散フレームワークのほとんどは単エージェント強化学習のために提案されており、マルチエージェントには適していない。
本稿では,アクター-ワーク-ラーナーアーキテクチャに基づく分散MARLフレームワークを設計する。
このフレームワークでは、複数の非同期環境相互作用モジュールを同時にデプロイすることができ、サンプル収集速度とサンプルの多様性を大幅に改善する。
一方、コンピューティングリソースをフル活用するために、モデルイテレーションを環境相互作用から切り離し、ポリシーイテレーションを加速させます。
最後に,maca軍事シミュレーション環境および不完全情報特性を有するsmacリアルタイム戦略ゲーム環境における提案フレームワークの有効性を検証した。
関連論文リスト
- Leveraging World Model Disentanglement in Value-Based Multi-Agent
Reinforcement Learning [18.651307543537655]
本稿では,Distangled World Modelを用いた新しいモデルベースマルチエージェント強化学習手法であるValue Decomposition Frameworkを提案する。
本研究では,本手法が高サンプリング効率を実現し,敵軍を撃破する性能が他のベースラインよりも優れていることを示すために,簡単な,ハード,スーパーハードのStarCraft IIマイクロマネジメントの課題について実験的に検討した。
論文 参考訳(メタデータ) (2023-09-08T22:12:43Z) - Mingling Foresight with Imagination: Model-Based Cooperative Multi-Agent
Reinforcement Learning [15.12491397254381]
本稿では,暗黙的なモデルに基づくマルチエージェント強化学習手法を提案する。
この方法では,エージェントは学習した仮想環境と対話し,将来の予測状態に応じて現在の状態値を評価することができる。
論文 参考訳(メタデータ) (2022-04-20T12:16:27Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) は,環境と数回交流した後の平衡政策を学習する。
自律運転シミュレーションベンチマークにおいて,本手法を実験的に実証した。
論文 参考訳(メタデータ) (2022-03-14T17:24:03Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - How to Sense the World: Leveraging Hierarchy in Multimodal Perception
for Robust Reinforcement Learning Agents [9.840104333194663]
我々は表現モデルの設計における階層性を主張し、新しいマルチモーダル表現モデルであるMUSEに貢献する。
MUSEは,アタリゲームにおけるマルチモーダル観察を備えた深層強化学習エージェントの感覚表現モデルである。
我々は、強化学習エージェントの異なる設計に関する比較研究を行い、MUSEは、エージェントが最小性能の損失で不完全な知覚経験の下でタスクを実行できることを示した。
論文 参考訳(メタデータ) (2021-10-07T16:35:23Z) - Efficiently Training On-Policy Actor-Critic Networks in Robotic Deep
Reinforcement Learning with Demonstration-like Sampled Exploration [7.930709072852582]
本稿では,アクター批判アルゴリズムに基づく実証から学ぶための一般的なフレームワークを提案する。
我々は,Mujocoの4つの標準ベンチマーク環境と,自設計の2つのロボット環境について実験を行った。
論文 参考訳(メタデータ) (2021-09-27T12:42:05Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
協調型マルチエージェント強化学習(MARL)は,エージェント数で指数関数的に大きい状態空間と動作空間により,スケーラビリティの問題に直面する。
本稿では,学習分散実行パラダイムに局所報酬を組み込んだ,新しい価値に基づくマルチエージェントアルゴリズム LOMAQ を提案する。
論文 参考訳(メタデータ) (2021-09-22T10:08:15Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
人口ベースマルチエージェント強化学習(PB-MARL)は、強化学習(RL)アルゴリズムでネストした一連の手法を指す。
PB-MARLのためのスケーラブルで効率的な計算フレームワークMALibを提案する。
論文 参考訳(メタデータ) (2021-06-05T03:27:08Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
本稿では,複雑な視覚環境において,エージェントが低品質な実演を行えるようにするためのアプローチの組み合わせを提案する。
提案した目標指向のリプレイバッファ構築により,エージェントはデモにおいて複雑な階層的タスクを解くためのサブゴールを自動的に強調することができる。
私たちのアルゴリズムに基づくこのソリューションは、有名なMineRLコンペティションのすべてのソリューションを破り、エージェントがMinecraft環境でダイヤモンドをマイニングすることを可能にする。
論文 参考訳(メタデータ) (2020-06-17T15:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。