Implementation and Empirical Evaluation of a Quantum Machine Learning
Pipeline for Local Classification
- URL: http://arxiv.org/abs/2205.05333v1
- Date: Wed, 11 May 2022 08:18:57 GMT
- Title: Implementation and Empirical Evaluation of a Quantum Machine Learning
Pipeline for Local Classification
- Authors: Enrico Zardini, Enrico Blanzieri, Davide Pastorello
- Abstract summary: This paper presents an implementation in Python of a QML pipeline for local classification.
Specifically, it consists of a quantum k-NN and a quantum binary classifier.
The results have shown the quantum pipeline's equivalence (in terms of accuracy) to its classical counterpart in the ideal case.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the current era, quantum resources are extremely limited, and this makes
difficult the usage of quantum machine learning (QML) models. Concerning the
supervised tasks, a viable approach is the introduction of a quantum locality
technique, which allows the models to focus only on the neighborhood of the
considered element. A well-known locality technique is the k-nearest neighbors
(k-NN) algorithm, of which several quantum variants have been proposed.
Nevertheless, they have not been employed yet as a preliminary step of other
QML models, whereas the classical counterpart has already proven successful. In
this paper, we present (i) an implementation in Python of a QML pipeline for
local classification, and (ii) its extensive empirical evaluation.
Specifically, the quantum pipeline, developed using Qiskit, consists of a
quantum k-NN and a quantum binary classifier. The results have shown the
quantum pipeline's equivalence (in terms of accuracy) to its classical
counterpart in the ideal case, the validity of locality's application to the
QML realm, but also the strong sensitivity of the chosen quantum k-NN to
probability fluctuations and the better performance of classical baseline
methods like the random forest.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Ansatz-Agnostic Exponential Resource Saving in Variational Quantum
Algorithms Using Shallow Shadows [5.618657159109373]
Variational Quantum Algorithms (VQA) have been identified as a promising candidate for the demonstration of near-term quantum advantage.
We present a protocol based on shallow shadows that achieves similar levels of savings for almost any shallow ansatz studied in the literature.
We show that two important applications in quantum information for which VQAs can be a powerful option, namely variational quantum state preparation and variational quantum circuit synthesis.
arXiv Detail & Related papers (2023-09-09T11:00:39Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
Variational Quantum Algorithm (VQA) shows a gain of performance in balanced accuracy with the LDA technique.
Current quantum computers are noisy and have few qubits to test, making it difficult to demonstrate the current and potential quantum advantage of QML methods.
arXiv Detail & Related papers (2022-08-28T16:58:37Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - Quantum variational learning for entanglement witnessing [0.0]
This work focuses on the potential implementation of quantum algorithms allowing to properly classify quantum states defined over a single register of $n$ qubits.
We exploit the notion of "entanglement witness", i.e., an operator whose expectation values allow to identify certain specific states as entangled.
We made use of Quantum Neural Networks (QNNs) in order to successfully learn how to reproduce the action of an entanglement witness.
arXiv Detail & Related papers (2022-05-20T20:14:28Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.