Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm
- URL: http://arxiv.org/abs/2205.00900v2
- Date: Fri, 12 Aug 2022 13:26:35 GMT
- Title: Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm
- Authors: Nicola Franco, Tom Wollschlaeger, Nicholas Gao, Jeanette Miriam
Lorenz, Stephan Guennemann
- Abstract summary: In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
- Score: 1.439946676159516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, quantum computers and algorithms have made significant
progress indicating the prospective importance of quantum computing (QC).
Especially combinatorial optimization has gained a lot of attention as an
application field for near-term quantum computers, both by using gate-based QC
via the Quantum Approximate Optimization Algorithm and by quantum annealing
using the Ising model. However, demonstrating an advantage over classical
methods in real-world applications remains an active area of research. In this
work, we investigate the robustness verification of ReLU networks, which
involves solving a many-variable mixed-integer programs (MIPs), as a practical
application. Classically, complete verification techniques struggle with large
networks as the combinatorial space grows exponentially, implying that
realistic networks are difficult to be verified by classical methods. To
alleviate this issue, we propose to use QC for neural network verification and
introduce a hybrid quantum procedure to compute provable certificates. By
applying Benders decomposition, we split the MIP into a quadratic unconstrained
binary optimization and a linear program which are solved by quantum and
classical computers, respectively. We further improve existing hybrid methods
based on the Benders decomposition by reducing the overall number of iterations
and placing a limit on the maximum number of qubits required. We show that, in
a simulated environment, our certificate is sound, and provide bounds on the
minimum number of qubits necessary to approximate the problem. Finally, we
evaluate our method within simulation and on quantum hardware.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Peptide Binding Classification on Quantum Computers [3.9540968630765643]
We conduct an extensive study on using near-term quantum computers for a task in the domain of computational biology.
We perform sequence classification on a task relevant to the design of therapeutic proteins, and find competitive performance with classical baselines of similar scale.
This work constitutes the first proof-of-concept application of near-term quantum computing to a task critical to the design of therapeutic proteins.
arXiv Detail & Related papers (2023-11-27T10:32:31Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Hybrid Quantum Classical Simulations [0.0]
We report on two major hybrid applications of quantum computing, namely, the quantum approximate optimisation algorithm (QAOA) and the variational quantum eigensolver (VQE)
Both are hybrid quantum classical algorithms as they require incremental communication between a classical central processing unit and a quantum processing unit to solve a problem.
arXiv Detail & Related papers (2022-10-06T10:49:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - Classical variational simulation of the Quantum Approximate Optimization
Algorithm [0.0]
We introduce a method to simulate layered quantum circuits consisting of parametrized gates.
A neural-network parametrization of the many-qubit wave function is used.
For the largest circuits simulated, we reach 54 qubits at 4 QAOA layers.
arXiv Detail & Related papers (2020-09-03T15:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.