論文の概要: NDGGNET-A Node Independent Gate based Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2205.05348v1
- Date: Wed, 11 May 2022 08:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 17:49:11.695876
- Title: NDGGNET-A Node Independent Gate based Graph Neural Networks
- Title(参考訳): NDGGNET-ノード独立ゲート型グラフニューラルネットワーク
- Authors: Ye Tang, Xuesong Yang, Xinrui Liu, Xiwei Zhao, Zhangang Lin, Changping
Peng
- Abstract要約: 疎結合なノードでは、単一のGNN層を通して十分な情報を得るのは難しい。
この論文では、通常のGNNモデルでより多くのレイヤに対応可能な新しいフレームワークを定義する。
実験結果から,提案モデルがモデル深度を効果的に向上し,複数のデータセットで良好に動作できることが示唆された。
- 参考スコア(独自算出の注目度): 6.155450481110693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) is an architecture for structural data, and has
been adopted in a mass of tasks and achieved fabulous results, such as link
prediction, node classification, graph classification and so on. Generally, for
a certain node in a given graph, a traditional GNN layer can be regarded as an
aggregation from one-hop neighbors, thus a set of stacked layers are able to
fetch and update node status within multi-hops. For nodes with sparse
connectivity, it is difficult to obtain enough information through a single GNN
layer as not only there are only few nodes directly connected to them but also
can not propagate the high-order neighbor information. However, as the number
of layer increases, the GNN model is prone to over-smooth for nodes with the
dense connectivity, which resulting in the decrease of accuracy. To tackle this
issue, in this thesis, we define a novel framework that allows the normal GNN
model to accommodate more layers. Specifically, a node-degree based gate is
employed to adjust weight of layers dynamically, that try to enhance the
information aggregation ability and reduce the probability of over-smoothing.
Experimental results show that our proposed model can effectively increase the
model depth and perform well on several datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、構造データのためのアーキテクチャであり、多数のタスクに採用され、リンク予測、ノード分類、グラフ分類などの素晴らしい結果を得た。
一般に、あるグラフのあるノードに対して、従来のGNNレイヤはワンホップの隣人からの集約と見なすことができるため、スタックされたレイヤのセットはマルチホップ内でノードの状態を取得して更新することができる。
疎結合なノードでは、単一のGNN層を通じて十分な情報を取得することは困難であり、直接接続されるノードは少ないだけでなく、高次隣の情報を伝播することができない。
しかし、層数が増加するにつれて、GNNモデルは接続密度の高いノードに対して過度に滑らかになる傾向にあり、その結果精度が低下する。
この問題に取り組むため、本論文では、通常のgnnモデルがより多くの層に対応できる新しいフレームワークを定義する。
具体的には,ノード度に基づくゲートを用いてレイヤの重みを動的に調整し,情報収集能力を高め,過度なスムース化の可能性を低減させる。
実験結果から,提案モデルがモデル深度を効果的に向上し,複数のデータセットで良好に動作できることが示唆された。
関連論文リスト
- EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Network In Graph Neural Network [9.951298152023691]
本稿では,任意のGNNモデルに対して,モデルをより深くすることでモデル容量を増大させるモデルに依存しない手法を提案する。
GNNレイヤの追加や拡張の代わりに、NGNNは、各GNNレイヤに非線形フィードフォワードニューラルネットワーク層を挿入することで、GNNモデルを深めている。
論文 参考訳(メタデータ) (2021-11-23T03:58:56Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [5.431036185361236]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Dual GNNs: Graph Neural Network Learning with Limited Supervision [33.770877823910176]
本稿では,この課題に対処するための新しいDual GNN学習フレームワークを提案する。
2つのモジュールを2つのGNN学習フレームワークに統合することにより、エンドツーエンドで共同学習を行う。
論文 参考訳(メタデータ) (2021-06-29T23:52:25Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
異種ネットワーク表現学習のための高次属性強化グラフニューラルネットワーク(HAEGNN)を提案する。
HAEGNNは、リッチで異質なセマンティクスのためのメタパスとメタグラフを同時に組み込む。
ノード分類、ノードクラスタリング、可視化における最先端の手法よりも優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-04-16T04:56:38Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - NCGNN: Node-level Capsule Graph Neural Network [45.23653314235767]
ノードレベルカプセルグラフニューラルネットワーク(ncgnn)は、ノードをカプセル群として表現する。
凝集に適したカプセルを適応的に選択する新しい動的ルーティング手法を開発した。
NCGNNは、過度にスムースな問題に対処でき、分類のためのより良いノード埋め込みを生成することで、芸術の状態を上回ります。
論文 参考訳(メタデータ) (2020-12-07T06:46:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。