論文の概要: NDGGNET-A Node Independent Gate based Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2205.05348v1
- Date: Wed, 11 May 2022 08:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 17:49:11.695876
- Title: NDGGNET-A Node Independent Gate based Graph Neural Networks
- Title(参考訳): NDGGNET-ノード独立ゲート型グラフニューラルネットワーク
- Authors: Ye Tang, Xuesong Yang, Xinrui Liu, Xiwei Zhao, Zhangang Lin, Changping
Peng
- Abstract要約: 疎結合なノードでは、単一のGNN層を通して十分な情報を得るのは難しい。
この論文では、通常のGNNモデルでより多くのレイヤに対応可能な新しいフレームワークを定義する。
実験結果から,提案モデルがモデル深度を効果的に向上し,複数のデータセットで良好に動作できることが示唆された。
- 参考スコア(独自算出の注目度): 6.155450481110693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) is an architecture for structural data, and has
been adopted in a mass of tasks and achieved fabulous results, such as link
prediction, node classification, graph classification and so on. Generally, for
a certain node in a given graph, a traditional GNN layer can be regarded as an
aggregation from one-hop neighbors, thus a set of stacked layers are able to
fetch and update node status within multi-hops. For nodes with sparse
connectivity, it is difficult to obtain enough information through a single GNN
layer as not only there are only few nodes directly connected to them but also
can not propagate the high-order neighbor information. However, as the number
of layer increases, the GNN model is prone to over-smooth for nodes with the
dense connectivity, which resulting in the decrease of accuracy. To tackle this
issue, in this thesis, we define a novel framework that allows the normal GNN
model to accommodate more layers. Specifically, a node-degree based gate is
employed to adjust weight of layers dynamically, that try to enhance the
information aggregation ability and reduce the probability of over-smoothing.
Experimental results show that our proposed model can effectively increase the
model depth and perform well on several datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、構造データのためのアーキテクチャであり、多数のタスクに採用され、リンク予測、ノード分類、グラフ分類などの素晴らしい結果を得た。
一般に、あるグラフのあるノードに対して、従来のGNNレイヤはワンホップの隣人からの集約と見なすことができるため、スタックされたレイヤのセットはマルチホップ内でノードの状態を取得して更新することができる。
疎結合なノードでは、単一のGNN層を通じて十分な情報を取得することは困難であり、直接接続されるノードは少ないだけでなく、高次隣の情報を伝播することができない。
しかし、層数が増加するにつれて、GNNモデルは接続密度の高いノードに対して過度に滑らかになる傾向にあり、その結果精度が低下する。
この問題に取り組むため、本論文では、通常のgnnモデルがより多くの層に対応できる新しいフレームワークを定義する。
具体的には,ノード度に基づくゲートを用いてレイヤの重みを動的に調整し,情報収集能力を高め,過度なスムース化の可能性を低減させる。
実験結果から,提案モデルがモデル深度を効果的に向上し,複数のデータセットで良好に動作できることが示唆された。
関連論文リスト
- Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
グラフニューラルネットワーク(GNN)は,グラフベースのデータから学ぶ上で大きな成功を収めている。
現在のGNNのキーとなるメカニズムはメッセージパッシングであり、ノードの機能は、その近隣から渡される情報に基づいて更新される。
本研究では,局所的特徴符号化(CLFE)を提案する。
論文 参考訳(メタデータ) (2024-05-08T01:51:19Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
本稿では,ローカル類似性(LocalSim)を用いて,プラグイン・アンド・プレイモジュールとしても機能するノードレベルの重み付き融合を学習する。
そこで本研究では,より情報性の高いマルチホップ情報を抽出するための,新規かつ効率的な初期残留差分接続(IRDC)を提案する。
提案手法,すなわちローカル類似グラフニューラルネットワーク(LSGNN)は,ホモ親和性グラフとヘテロ親和性グラフの両方において,同等あるいは優れた最先端性能を提供できる。
論文 参考訳(メタデータ) (2023-05-07T09:06:11Z) - AGNN: Alternating Graph-Regularized Neural Networks to Alleviate
Over-Smoothing [29.618952407794776]
グラフ畳み込み層(GCL)とグラフ埋め込み層(GEL)からなる交代グラフ正規化ニューラルネットワーク(AGNN)を提案する。
GELはラプラシアン埋め込み項を含むグラフ正規化最適化から導かれる。
AGNNは、いくつかの多層または多次グラフニューラルネットワークのパフォーマンス比較を含む、多数の実験を通じて評価されている。
論文 参考訳(メタデータ) (2023-04-14T09:20:03Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
数値ノード特徴とグラフ構造を入力とするグラフニューラルネットワーク(GNN)は,グラフデータを用いた各種教師付き学習タスクにおいて,優れた性能を示した。
IID(non-graph)データをGNNに簡単に組み込むことはできない。
本稿では、グラフ認識の伝播をIDデータに意図した任意のモデルで融合するロバストな積み重ねフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T22:46:33Z) - Network In Graph Neural Network [9.951298152023691]
本稿では,任意のGNNモデルに対して,モデルをより深くすることでモデル容量を増大させるモデルに依存しない手法を提案する。
GNNレイヤの追加や拡張の代わりに、NGNNは、各GNNレイヤに非線形フィードフォワードニューラルネットワーク層を挿入することで、GNNモデルを深めている。
論文 参考訳(メタデータ) (2021-11-23T03:58:56Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNNは、Vector Quantization(VQ)を使用して、パフォーマンスを損なうことなく、畳み込みベースのGNNをスケールアップするための普遍的なフレームワークである。
我々のフレームワークは,グラフ畳み込み行列の低ランク版と組み合わせた量子化表現を用いて,GNNの「隣の爆発」問題を回避する。
論文 参考訳(メタデータ) (2021-10-27T11:48:50Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - NCGNN: Node-level Capsule Graph Neural Network [45.23653314235767]
ノードレベルカプセルグラフニューラルネットワーク(ncgnn)は、ノードをカプセル群として表現する。
凝集に適したカプセルを適応的に選択する新しい動的ルーティング手法を開発した。
NCGNNは、過度にスムースな問題に対処でき、分類のためのより良いノード埋め込みを生成することで、芸術の状態を上回ります。
論文 参考訳(メタデータ) (2020-12-07T06:46:17Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。