論文の概要: LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity
- arxiv url: http://arxiv.org/abs/2305.04225v2
- Date: Tue, 20 Jun 2023 11:53:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 02:32:43.972631
- Title: LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity
- Title(参考訳): LSGNN:局所類似性によるノード分類における一般グラフニューラルネットワーク
- Authors: Yuhan Chen, Yihong Luo, Jing Tang, Liang Yang, Siya Qiu, Chuan Wang,
Xiaochun Cao
- Abstract要約: 本稿では,ローカル類似性(LocalSim)を用いて,プラグイン・アンド・プレイモジュールとしても機能するノードレベルの重み付き融合を学習する。
そこで本研究では,より情報性の高いマルチホップ情報を抽出するための,新規かつ効率的な初期残留差分接続(IRDC)を提案する。
提案手法,すなわちローカル類似グラフニューラルネットワーク(LSGNN)は,ホモ親和性グラフとヘテロ親和性グラフの両方において,同等あるいは優れた最先端性能を提供できる。
- 参考スコア(独自算出の注目度): 59.41119013018377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterophily has been considered as an issue that hurts the performance of
Graph Neural Networks (GNNs). To address this issue, some existing work uses a
graph-level weighted fusion of the information of multi-hop neighbors to
include more nodes with homophily. However, the heterophily might differ among
nodes, which requires to consider the local topology. Motivated by it, we
propose to use the local similarity (LocalSim) to learn node-level weighted
fusion, which can also serve as a plug-and-play module. For better fusion, we
propose a novel and efficient Initial Residual Difference Connection (IRDC) to
extract more informative multi-hop information. Moreover, we provide
theoretical analysis on the effectiveness of LocalSim representing node
homophily on synthetic graphs. Extensive evaluations over real benchmark
datasets show that our proposed method, namely Local Similarity Graph Neural
Network (LSGNN), can offer comparable or superior state-of-the-art performance
on both homophilic and heterophilic graphs. Meanwhile, the plug-and-play model
can significantly boost the performance of existing GNNs. Our code is provided
at https://github.com/draym28/LSGNN.
- Abstract(参考訳): ヘテロフィリーはグラフニューラルネットワーク(GNN)のパフォーマンスを損なう問題とみなされている。
この問題に対処するために、いくつかの既存の研究は、ホモフィリーを持つより多くのノードを含むために、マルチホップ隣人の情報のグラフレベルの重み付け融合を使用している。
しかし、ヘテロフィリは局所位相を考える必要があるノード間で異なるかもしれない。
そこで我々は,局所的な類似性(LocalSim)を用いて,プラグイン・アンド・プレイモジュールとしても機能するノードレベルの重み付き融合を学習することを提案する。
そこで本研究では,より情報性の高いマルチホップ情報を抽出するための,新規かつ効率的な初期残留差分接続(IRDC)を提案する。
さらに、合成グラフ上でのノードホモフィリーを表現するLocalSimの有効性に関する理論的解析を行う。
提案手法であるローカル類似グラフニューラルネットワーク(LSGNN)は,同好性グラフとヘテロ親和性グラフの両面において,同等あるいは優れた技術性能を提供できることを示す。
一方、プラグアンドプレイモデルは既存のGNNの性能を大幅に向上させることができる。
私たちのコードはhttps://github.com/draym28/LSGNNで提供されています。
関連論文リスト
- Strong Transitivity Relations and Graph Neural Networks [1.19658449368018]
地域はグラフベースの学習において、世代を埋め込む上で重要な役割を担っている。
本稿では,トランジシティグラフニューラルネットワーク(TransGNN)について紹介する。
実世界の複数のデータセットにまたがってモデルを評価した結果,いくつかのよく知られたGNNモデルの性能が大幅に向上することが確認された。
論文 参考訳(メタデータ) (2024-01-01T13:53:50Z) - NDGGNET-A Node Independent Gate based Graph Neural Networks [6.155450481110693]
疎結合なノードでは、単一のGNN層を通して十分な情報を得るのは難しい。
この論文では、通常のGNNモデルでより多くのレイヤに対応可能な新しいフレームワークを定義する。
実験結果から,提案モデルがモデル深度を効果的に向上し,複数のデータセットで良好に動作できることが示唆された。
論文 参考訳(メタデータ) (2022-05-11T08:51:04Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Position-based Hash Embeddings For Scaling Graph Neural Networks [8.87527266373087]
グラフニューラルネットワーク(GNN)は、ノードのエゴネットワークのトポロジとエゴネットワークのノードの特徴を考慮したノード表現を演算する。
ノードが高品質な機能を持っていない場合、GNNはノードの埋め込みを計算するために埋め込み層を学び、それらを入力機能として使用する。
この埋め込みレイヤに関連するメモリを削減するため、NLPやレコメンダシステムのようなアプリケーションで一般的に使用されるハッシュベースのアプローチが利用可能である。
本稿では,グラフ内のノードの位置を利用して,必要なメモリを大幅に削減する手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T22:42:25Z) - On Local Aggregation in Heterophilic Graphs [11.100606980915144]
我々は,従来のGNNと多層パーセプトロンを適切に調整した手法が,ヘテロ親和性グラフ上の最近の長距離アグリゲーション手法の精度に適合しているか,あるいは超越しているかを示す。
本稿では,新しい情報理論グラフ計量であるNativeborhood Information Content(NIC)メトリックを提案する。
論文 参考訳(メタデータ) (2021-06-06T19:12:31Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z) - Non-Local Graph Neural Networks [60.28057802327858]
本稿では,GNNに対する効果的な注意誘導ソート機能を備えた,シンプルで効果的な非局所集約フレームワークを提案する。
異種グラフデータセットを分析し,非局所的なGNNを評価するための徹底的な実験を行った。
論文 参考訳(メタデータ) (2020-05-29T14:50:27Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。