論文の概要: Identifying Moments of Change from Longitudinal User Text
- arxiv url: http://arxiv.org/abs/2205.05593v1
- Date: Wed, 11 May 2022 16:03:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 20:51:09.602267
- Title: Identifying Moments of Change from Longitudinal User Text
- Title(参考訳): 縦長ユーザテキストから変化のモーメントを識別する
- Authors: Adam Tsakalidis, Federico Nanni, Anthony Hills, Jenny Chim, Jiayu
Song, Maria Liakata
- Abstract要約: オンラインでの共有コンテンツに基づいて個人の変化の瞬間を識別するタスクを新たに定義する。
私たちが考える変化は、突然の気分の変化(スイッチ)または段階的な気分の進行(エスカレーション)である。
変更の瞬間をキャプチャするための詳細なガイドラインと、手動で注釈付けされたユーザタイムライン500のコーパスを作成しました。
- 参考スコア(独自算出の注目度): 16.45577617206016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying changes in individuals' behaviour and mood, as observed via
content shared on online platforms, is increasingly gaining importance. Most
research to-date on this topic focuses on either: (a) identifying individuals
at risk or with a certain mental health condition given a batch of posts or (b)
providing equivalent labels at the post level. A disadvantage of such work is
the lack of a strong temporal component and the inability to make longitudinal
assessments following an individual's trajectory and allowing timely
interventions. Here we define a new task, that of identifying moments of change
in individuals on the basis of their shared content online. The changes we
consider are sudden shifts in mood (switches) or gradual mood progression
(escalations). We have created detailed guidelines for capturing moments of
change and a corpus of 500 manually annotated user timelines (18.7K posts). We
have developed a variety of baseline models drawing inspiration from related
tasks and show that the best performance is obtained through context aware
sequential modelling. We also introduce new metrics for capturing rare events
in temporal windows.
- Abstract(参考訳): オンラインプラットフォームで共有されているコンテンツを通じて観察される個人の行動やムードの変化の特定がますます重要になっている。
この話題に関する最新の研究は、どちらにも焦点を当てている。
(a)リスクのある個人、又は複数の役職が与えられた特定の精神状態のある個人を識別すること
(b)ポストレベルで同等のラベルを提供する。
そのような作業の欠点は、強い時間的要素の欠如と、個人の軌道に沿って縦断的な評価を行えず、タイムリーな介入を可能にすることである。
ここでは、オンラインで共有されたコンテンツに基づいて個人の変化の瞬間を特定する新しいタスクを定義する。
私たちが考える変化は、突然の気分の変化(スイッチ)または段階的な気分の進行(エスカレーション)です。
変更の瞬間をキャプチャするための詳細なガイドラインと、手動で注釈付きユーザタイムライン(18.7Kの投稿)500のコーパスを作成しました。
我々は、関連するタスクからインスピレーションを得た様々なベースラインモデルを開発し、文脈を考慮した逐次モデリングによって最高のパフォーマンスが得られることを示す。
また,時間窓のレアイベントをキャプチャする新たなメトリクスも導入する。
- 全文 参考訳へのリンク
関連論文リスト
- SCoT: Sense Clustering over Time: a tool for the analysis of lexical
change [79.80787569986283]
我々は、語彙変化を分析する新しいネットワークベースのツールであるSense Clustering over Time (SCoT)を提示する。
SCoTは、単語の意味を類似した単語の集合として表現する。
危機の意味の変化に関するヨーロッパの研究で、うまく使われてきた」。
論文 参考訳(メタデータ) (2022-03-18T12:04:09Z) - PROMPT WAYWARDNESS: The Curious Case of Discretized Interpretation of
Continuous Prompts [99.03864962014431]
目標タスクの微調整連続プロンプトは、フルモデルの微調整に代わるコンパクトな代替品として登場した。
実際には、連続的なプロンプトによって解決されたタスクと、最も近い隣人との間の「方向」の挙動を観察する。
論文 参考訳(メタデータ) (2021-12-15T18:55:05Z) - Efficient Modelling Across Time of Human Actions and Interactions [92.39082696657874]
3つの畳み込みニューラルネットワーク(CNND)における現在の固定サイズの時間的カーネルは、入力の時間的変動に対処するために改善できると主張している。
我々は、アーキテクチャの異なるレイヤにまたがる機能の違いを強化することで、アクションのクラス間でどのようにうまく対処できるかを研究する。
提案手法は、いくつかのベンチマークアクション認識データセットで評価され、競合する結果を示す。
論文 参考訳(メタデータ) (2021-10-05T15:39:11Z) - Idiosyncratic but not Arbitrary: Learning Idiolects in Online Registers
Reveals Distinctive yet Consistent Individual Styles [7.4037154707453965]
我々は,文体の特徴を特定し,エンコードするために,多人数の著者間比較を通じてイディオレクトを研究するための新しいアプローチを提案する。
ニューラルネットワークは短いテキストの著者識別において高い性能を達成する。
異なる言語要素の相対的寄与と慣用的変動を定量化する。
論文 参考訳(メタデータ) (2021-09-07T15:49:23Z) - Room to Grow: Understanding Personal Characteristics Behind Self
Improvement Using Social Media [27.699640898659283]
変化を意図して継続する人々のモチベーション関連行動について検討する。
我々の実験は、変化の意図に固執する人々のモチベーション関連行動に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-05-17T17:30:30Z) - Embracing Uncertainty: Decoupling and De-bias for Robust Temporal
Grounding [23.571580627202405]
時間接地は、言語クエリによって、未トリミングビデオ内の時間境界をローカライズすることを目的としている。
クエリの不確実性とラベルの不確実性という2つのタイプの避けられない人間の不確実性の課題に直面しています。
人間の不確実性を受け入れる新しいDeNet(Decoupling and De-bias)を提案する。
論文 参考訳(メタデータ) (2021-03-31T07:00:56Z) - Content-Based Detection of Temporal Metadata Manipulation [91.34308819261905]
画像の撮像時間とその内容と地理的位置とが一致しているかどうかを検証するためのエンドツーエンドのアプローチを提案する。
中心となる考え方は、画像の内容、キャプチャ時間、地理的位置が一致する確率を予測するための教師付き一貫性検証の利用である。
我々のアプローチは、大規模なベンチマークデータセットの以前の作業により改善され、分類精度が59.03%から81.07%に向上した。
論文 参考訳(メタデータ) (2021-03-08T13:16:19Z) - Coarse Temporal Attention Network (CTA-Net) for Driver's Activity
Recognition [14.07119502083967]
ドライバーの活動は、同様の身体部分の動きで同じ被験者によって実行され、微妙な変化をもたらすため、異なります。
我々のモデルはCTA-Net(Coarse Temporal Attention Network)と呼ばれ、粗い時間枝をトレーニング可能な視点で導入する。
モデルは革新的なアテンションメカニズムを使用して、アクティビティ認識のための高レベルなアクション固有のコンテキスト情報を生成する。
論文 参考訳(メタデータ) (2021-01-17T10:15:37Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Learning Temporal Dynamics from Cycles in Narrated Video [85.89096034281694]
時が経つにつれて世界がどのように変化するかをモデル化する学習問題に対する自己監督型ソリューションを提案します。
私たちのモデルは、前方および後方の時間を予測するためにモダリティに依存しない関数を学習します。
将来的な動作の予測や画像の時間的順序付けなど,様々なタスクに対して,学習されたダイナミクスモデルを適用する。
論文 参考訳(メタデータ) (2021-01-07T02:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。