論文の概要: Editing Personality for Large Language Models
- arxiv url: http://arxiv.org/abs/2310.02168v4
- Date: Sun, 1 Sep 2024 05:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-04 22:24:42.242419
- Title: Editing Personality for Large Language Models
- Title(参考訳): 大規模言語モデルのためのパーソナリティの編集
- Authors: Shengyu Mao, Xiaohan Wang, Mengru Wang, Yong Jiang, Pengjun Xie, Fei Huang, Ningyu Zhang,
- Abstract要約: 本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
このタスクに対処する新しいベンチマークデータセットであるPersonalityEditを構築します。
- 参考スコア(独自算出の注目度): 73.59001811199823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs). This task seeks to adjust the models' responses to opinion-related questions on specified topics since an individual's personality often manifests in the form of their expressed opinions, thereby showcasing different personality traits. Specifically, we construct PersonalityEdit, a new benchmark dataset to address this task. Drawing on the theory in Social Psychology, we isolate three representative traits, namely Neuroticism, Extraversion, and Agreeableness, as the foundation for our benchmark. We then gather data using GPT-4, generating responses that align with a specified topic and embody the targeted personality trait. We conduct comprehensive experiments involving various baselines and discuss the representation of personality behavior in LLMs. Our findings uncover potential challenges of the proposed task, illustrating several remaining issues. We anticipate that our work can stimulate further annotation in model editing and personality-related research. Code is available at https://github.com/zjunlp/EasyEdit.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) の性格特性の編集に焦点をあてた革新的なタスクを紹介する。
この課題は,個々人の人格が表現された意見の形で現れることが多いため,特定の話題に対する意見関連質問に対するモデルの反応を調整し,異なる人格特性を示す。
具体的には、このタスクに対処するための新しいベンチマークデータセットであるPersonalityEditを構築します。
社会心理学の理論に基づいて、我々は、我々のベンチマークの基礎として、神経症、外転、不可避性の3つの代表的特徴を抽出した。
そして、GPT-4を用いてデータを収集し、特定のトピックに一致した応答を生成し、ターゲットの性格特性を具現化する。
様々なベースラインを含む包括的実験を行い,LLMにおける個性行動の表現について議論する。
本研究は,提案課題の潜在的な課題を明らかにし,いくつかの課題について考察した。
我々は,モデル編集やパーソナリティ関連研究において,この研究がさらなるアノテーションを刺激することを期待している。
コードはhttps://github.com/zjunlp/EasyEdit.comで入手できる。
関連論文リスト
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
大規模言語モデル (LLM) は、様々な性格特性をシミュレートする能力が増している。
LLMにおけるパーソナリティ特性誘導のためのニューロンに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-16T07:47:45Z) - Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
パーソナリティ認識は,対話やソーシャルメディア投稿などのユーザデータに含まれる性格特性を識別することを目的としている。
本稿では,人格特性の証拠として推論過程を明らかにすることを目的とした,説明可能な人格認識という新しい課題を提案する。
論文 参考訳(メタデータ) (2024-09-29T14:41:43Z) - Is persona enough for personality? Using ChatGPT to reconstruct an agent's latent personality from simple descriptions [2.6080756513915824]
パーソナリティ(Personality)は、人間の認知の基本的な側面であり、行動、思考、感情に影響を与える様々な特徴を含んでいる。
本稿では,社会デコグラフィとパーソナリティ型情報を含む簡単な記述のみに基づいて,これらの複雑な認知属性を再構築する大規模言語モデル(LLM)の機能について考察する。
論文 参考訳(メタデータ) (2024-06-18T02:32:57Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
パーソナリティ検出は、ソーシャルメディア投稿に根ざした性格特性を検出することを目的としている。
既存のほとんどのメソッドは、事前訓練された言語モデルを微調整することで、ポスト機能を直接学習する。
本稿では,大規模言語モデル (LLM) に基づくテキスト拡張強化人格検出モデルを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:10:18Z) - Eliciting Personality Traits in Large Language Models [0.0]
大規模言語モデル(LLM)は採用の文脈において、候補者と雇用主の両方が利用している。
本研究は,異なる入力プロンプトに基づいて,それらの出力変動を調べることによって,そのようなモデルをよりよく理解することを目的とする。
論文 参考訳(メタデータ) (2024-02-13T10:09:00Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Personality-aware Human-centric Multimodal Reasoning: A New Task,
Dataset and Baselines [32.82738983843281]
我々はPersonality-aware Human-centric Multimodal Reasoning (PHMR) (T1)と呼ばれる新しいタスクを導入する。
課題は、過去の事例から得たマルチモーダル情報を用いて、個性要素を統合しながら、特定の個人の将来行動を予測することである。
実験の結果,性格特性を取り入れることで,人間中心の多モーダル推論性能が向上することが示された。
論文 参考訳(メタデータ) (2023-04-05T09:09:10Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
言語モデルにおける知覚的パーソナリティが、言語生成において一貫して現れるかどうかを検討する。
BERT や GPT2 のような言語モデルでは、異なる文脈におけるパーソナライズマーカーの識別と反映が一貫して可能であることを示す。
この振る舞いは、非常に予測可能な方法で操作できる能力を示し、それらを人格の特徴を特定し、ダイアログシステムのようなアプリケーションにおけるペルソナを制御するツールとしてフレーム化します。
論文 参考訳(メタデータ) (2022-12-20T14:24:11Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
本稿では,ピアツーピアのHindi会話データセットであるVyaktitvを提案する。
参加者の高品質な音声とビデオの録音と、会話ごとにヒングリッシュのテキストによる書き起こしで構成されている。
データセットには、収入、文化的指向など、すべての参加者のための豊富な社会デコグラフィー的特徴が含まれています。
論文 参考訳(メタデータ) (2020-08-31T17:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。