論文の概要: Video-ReTime: Learning Temporally Varying Speediness for Time Remapping
- arxiv url: http://arxiv.org/abs/2205.05609v1
- Date: Wed, 11 May 2022 16:27:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 19:32:58.630739
- Title: Video-ReTime: Learning Temporally Varying Speediness for Time Remapping
- Title(参考訳): Video-ReTime: タイムリマッピングの速さを学習する
- Authors: Simon Jenni, Markus Woodson, Fabian Caba Heilbron
- Abstract要約: 我々は、自己スーパービジョンを介してニューラルネットワークをトレーニングし、ビデオ再生速度の変化を認識し、正確にローカライズする。
本モデルは,従来の手法よりも高精度で,再生速度の変動を正確に検出できることを実証する。
- 参考スコア(独自算出の注目度): 12.139222986297263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for generating a temporally remapped video that matches
the desired target duration while maximally preserving natural video dynamics.
Our approach trains a neural network through self-supervision to recognize and
accurately localize temporally varying changes in the video playback speed. To
re-time videos, we 1. use the model to infer the slowness of individual video
frames, and 2. optimize the temporal frame sub-sampling to be consistent with
the model's slowness predictions. We demonstrate that this model can detect
playback speed variations more accurately while also being orders of magnitude
more efficient than prior approaches. Furthermore, we propose an optimization
for video re-timing that enables precise control over the target duration and
performs more robustly on longer videos than prior methods. We evaluate the
model quantitatively on artificially speed-up videos, through transfer to
action recognition, and qualitatively through user studies.
- Abstract(参考訳): 本稿では,所望の目標時間に合わせて時間的に再マップされたビデオを生成する方法を提案する。
本手法は,ビデオ再生速度の時間変化を認識・正確に局所化するために,自己スーパービジョンを通してニューラルネットワークを訓練する。
動画を再生するために
1.個々のビデオフレームの遅さを推測するためにモデルを使用する。
2. 時間フレームのサブサンプリングを最適化し、モデルのスローネス予測と整合する。
本モデルは,従来の手法よりも高精度で,再生速度の変動を正確に検出できることを実証する。
さらに,対象時間を正確に制御し,より長い動画に対してよりロバストに実行できるようにするビデオ再見積の最適化を提案する。
本研究では,動画の速度向上,行動認識への伝達,ユーザ研究による質的評価を行った。
関連論文リスト
- Video Diffusion Models [47.99413440461512]
時間的コヒーレントな高忠実度ビデオの生成は、生成モデリング研究において重要なマイルストーンである。
本稿では,ビデオ生成のための拡散モデルを提案する。
そこで本研究では,テキスト条件付きビデオ生成タスクにおける最初の結果と,未条件のビデオ生成ベンチマークにおける最新結果について述べる。
論文 参考訳(メタデータ) (2022-04-07T14:08:02Z) - Video Demoireing with Relation-Based Temporal Consistency [68.20281109859998]
カラー歪みのように見えるモアレパターンは、デジタルカメラでスクリーンを撮影する際に、画像と映像の画質を著しく劣化させる。
我々は、このような望ましくないモアレパターンをビデオで除去する方法を研究している。
論文 参考訳(メタデータ) (2022-04-06T17:45:38Z) - STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution
Video Prediction [78.129039340528]
本稿では,高解像度映像予測のための時間残差予測モデル(STRPM)を提案する。
STRPMは、既存の様々な方法と比較して、より満足な結果を得ることができる。
実験の結果, STRPMは既存手法と比較して良好な結果が得られた。
論文 参考訳(メタデータ) (2022-03-30T06:24:00Z) - Motion-from-Blur: 3D Shape and Motion Estimation of Motion-blurred
Objects in Videos [115.71874459429381]
本研究では,映像から3次元の運動,3次元の形状,および高度に動きやすい物体の外観を同時推定する手法を提案する。
提案手法は, 高速移動物体の劣化と3次元再構成において, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-29T11:25:14Z) - FREGAN : an application of generative adversarial networks in enhancing
the frame rate of videos [1.1688030627514534]
FREGAN(Frame Rate Enhancement Generative Adversarial Network)モデルが提案されている。
提案手法の有効性を標準データセットで検証した。
実験結果は,提案モデルがピーク信号対雑音比(PSNR)が34.94で,構造類似度指数(SSIM)が0.95であることを示している。
論文 参考訳(メタデータ) (2021-11-01T17:19:00Z) - Video Rescaling Networks with Joint Optimization Strategies for
Downscaling and Upscaling [15.630742638440998]
結合層を持つ可逆ニューラルネットワークに基づく2つの共同最適化手法を提案する。
我々のLong Short-Term Memory Video Rescaling Network (LSTM-VRN)は、低解像度ビデオの時間情報を利用して、アップスケーリングに欠落する高周波情報の明示的な予測を形成する。
当社のマルチインプットマルチアウトプットビデオリスケーリングネットワーク(MIMO-VRN)は、ビデオフレームのグループを同時にダウンスケーリングおよびアップスケーリングするための新しい戦略を提案します。
論文 参考訳(メタデータ) (2021-03-27T09:35:38Z) - Learning Long-Term Style-Preserving Blind Video Temporal Consistency [6.6908747077585105]
本論文では, 映像に適用される変換を, 繰り返しニューラルネットワークという形で後処理モデルを提案する。
我々のモデルは、最近GANビデオ生成のために導入されたPing Pongプロシージャとそれに対応する損失を用いて訓練されている。
DAVISとvidevo.netデータセットのモデルを評価し、フリック除去に関する最先端の結果を提供することを示す。
論文 参考訳(メタデータ) (2021-03-12T13:54:34Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z) - Semi-Supervised Action Recognition with Temporal Contrastive Learning [50.08957096801457]
2つの異なる速度でラベル付きビデオを用いて2経路の時間的コントラストモデルを学習する。
我々は最先端の半教師付き画像認識手法の映像拡張性能を著しく向上させた。
論文 参考訳(メタデータ) (2021-02-04T17:28:35Z) - Intrinsic Temporal Regularization for High-resolution Human Video
Synthesis [59.54483950973432]
時間整合性は、画像処理パイプラインをビデオドメインに拡張する上で重要である。
フレームジェネレーターを介して本質的信頼度マップを推定し,運動推定を調節する,本質的な時間正規化方式を提案する。
我々は、本質的な時間的規制をシングルイメージジェネレータに適用し、強力な「Internet」が512Times512$の人間のアクションビデオを生成します。
論文 参考訳(メタデータ) (2020-12-11T05:29:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。