論文の概要: Blockchain-based Secure Client Selection in Federated Learning
- arxiv url: http://arxiv.org/abs/2205.05611v1
- Date: Wed, 11 May 2022 16:28:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-12 21:57:32.903330
- Title: Blockchain-based Secure Client Selection in Federated Learning
- Title(参考訳): フェデレーション学習におけるブロックチェーンベースのセキュアクライアント選択
- Authors: Truc Nguyen, Phuc Thai, Tre' R. Jeter, Thang N. Dinh, My T. Thai
- Abstract要約: ブロックチェーン技術を使って、フェデレートラーニングのための検証可能なクライアント選択プロトコルを提案しています。
本プロトコルでは,クライアントのランダムな選択を強制し,サーバが選択プロセスの判断で制御できないようにする。
この攻撃に対して当社のプロトコルが安全であることを示すセキュリティ証明を提示する。
- 参考スコア(独自算出の注目度): 18.001794899303626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the great potential of Federated Learning (FL) in large-scale
distributed learning, the current system is still subject to several privacy
issues due to the fact that local models trained by clients are exposed to the
central server. Consequently, secure aggregation protocols for FL have been
developed to conceal the local models from the server. However, we show that,
by manipulating the client selection process, the server can circumvent the
secure aggregation to learn the local models of a victim client, indicating
that secure aggregation alone is inadequate for privacy protection. To tackle
this issue, we leverage blockchain technology to propose a verifiable client
selection protocol. Owing to the immutability and transparency of blockchain,
our proposed protocol enforces a random selection of clients, making the server
unable to control the selection process at its discretion. We present security
proofs showing that our protocol is secure against this attack. Additionally,
we conduct several experiments on an Ethereum-like blockchain to demonstrate
the feasibility and practicality of our solution.
- Abstract(参考訳): 大規模分散学習における連合学習(federated learning, fl)の可能性は大きいが、現在のシステムは、クライアントがトレーニングしたローカルモデルが中央サーバに露出しているという事実から、いくつかのプライバシの問題にさらされている。
その結果,サーバからローカルモデルを隠蔽するために,FLのセキュアアグリゲーションプロトコルが開発された。
しかし,クライアント選択プロセスの操作により,サーバはセキュアなアグリゲーションを回避して被害者のローカルモデルを学ぶことができ,セキュアなアグリゲーションだけではプライバシ保護には不十分であることを示す。
この問題に取り組むため,我々はブロックチェーン技術を利用して検証可能なクライアント選択プロトコルを提案する。
ブロックチェーンの不変性と透明性のため、提案プロトコルはクライアントのランダムな選択を強制し、サーバがその判断で選択プロセスを制御できないようにする。
この攻撃に対して当社のプロトコルが安全であることを示すセキュリティ証明を提示する。
さらに、ethereumライクなブロックチェーンでいくつかの実験を行い、ソリューションの実現性と実用性を実証しました。
関連論文リスト
- Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
機密性と透明性の両立を目的とした,ブロックチェーンベースのPAISアーキテクチャを提案する。
スマートコントラクトは公開インタラクションを制定、強制、保存し、属性ベースの暗号化技術は機密情報へのアクセス許可を指定するために採用されている。
論文 参考訳(メタデータ) (2024-12-07T20:18:36Z) - Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning [17.45950557331482]
フェデレートラーニングは、多様なデータに対するグローバルモデルの協調学習を可能にし、データのローカリティを保ち、ユーザデータを中央サーバに転送する必要をなくす。
セキュアアグリゲーションプロトコルは、ユーザ更新をマスク/暗号化し、中央サーバがマスキングされた情報を集約できるように設計されている。
MicroSecAgg (PoPETS 2024) は,既存のアプローチの通信複雑性を緩和することを目的とした,単一のサーバセキュアアグリゲーションプロトコルを提案する。
論文 参考訳(メタデータ) (2024-10-13T00:06:03Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Security and Privacy Enhancing in Blockchain-based IoT Environments via Anonym Auditing [0.0]
ブロックチェーンの分散性とIoTコンテキストに適した高度なセキュリティプロトコルを組み合わせた,新たなフレームワークを提案する。
IoT環境でのブロックチェーンのアーキテクチャを概説し、ワークフローと使用する特定のセキュリティメカニズムを強調します。
本稿では,プライバシー向上ツールと匿名監査手法を統合したセキュリティプロトコルを提案する。
論文 参考訳(メタデータ) (2024-03-03T01:09:43Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Robust and Actively Secure Serverless Collaborative Learning [48.01929996757643]
コラボレーティブ機械学習(ML)は、分散データからより良いモデルを学ぶために広く利用されている。
学習のための協調的なアプローチは、直感的にユーザデータを保護しますが、サーバ、クライアント、あるいはその両方に対して脆弱なままです。
本稿では、悪意のあるサーバに対してセキュアで、悪意のあるクライアントに対して堅牢なピアツーピア学習方式を提案する。
論文 参考訳(メタデータ) (2023-10-25T14:43:03Z) - Blockchain-based Optimized Client Selection and Privacy Preserved
Framework for Federated Learning [2.4201849657206496]
フェデレートラーニング(Federated Learning)は、大規模ニューラルネットワークモデルをトレーニングする分散メカニズムで、複数のクライアントが参加する。
この機能により、フェデレーション学習はデータのプライバシー問題に対するセキュアなソリューションとみなされる。
ブロックチェーンベースの最適化クライアント選択とプライバシ保護フレームワークを提案しました。
論文 参考訳(メタデータ) (2023-07-25T01:35:51Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
ブロックチェーンと分散台帳技術に基づくセキュアで信頼性の高いフェデレーション学習システムを提案する。
本システムでは,オンチェーン型スマートコントラクトを利用したピアツーピア投票機構と報酬アンドスラッシュ機構を組み込んで,悪意ある行動の検出と検出を行う。
論文 参考訳(メタデータ) (2023-07-02T11:23:33Z) - Collusion Resistant Federated Learning with Oblivious Distributed
Differential Privacy [4.951247283741297]
プライバシ保護フェデレーション学習は、分散クライアントの集団が共同で共有モデルを学ぶことを可能にする。
本稿では、このようなクライアントの共謀に対して最初に保護する、難解な分散差分プライバシーに基づく効率的なメカニズムを提案する。
我々は,プロトコルの実行速度,学習精度,および2つのデータセットのプライバシ性能を実証的に分析した。
論文 参考訳(メタデータ) (2022-02-20T19:52:53Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。