論文の概要: Security and Privacy Enhancing in Blockchain-based IoT Environments via Anonym Auditing
- arxiv url: http://arxiv.org/abs/2403.01356v1
- Date: Sun, 3 Mar 2024 01:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:29:47.042247
- Title: Security and Privacy Enhancing in Blockchain-based IoT Environments via Anonym Auditing
- Title(参考訳): 匿名監査によるブロックチェーンベースのIoT環境のセキュリティとプライバシ向上
- Authors: Peyman Khordadpour, Saeed Ahmadi,
- Abstract要約: ブロックチェーンの分散性とIoTコンテキストに適した高度なセキュリティプロトコルを組み合わせた,新たなフレームワークを提案する。
IoT環境でのブロックチェーンのアーキテクチャを概説し、ワークフローと使用する特定のセキュリティメカニズムを強調します。
本稿では,プライバシー向上ツールと匿名監査手法を統合したセキュリティプロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of blockchain technology in Internet of Things (IoT) environments is a revolutionary step towards ensuring robust security and enhanced privacy. This paper delves into the unique challenges and solutions associated with securing blockchain-based IoT systems, with a specific focus on anonymous auditing to reinforce privacy and security. We propose a novel framework that combines the decentralized nature of blockchain with advanced security protocols tailored for IoT contexts. Central to our approach is the implementation of anonymization techniques in auditing processes, ensuring user privacy while maintaining the integrity and transparency of blockchain transactions. We outline the architecture of blockchain in IoT environments, emphasizing the workflow and specific security mechanisms employed. Additionally, we introduce a security protocol that integrates privacy-enhancing tools and anonymous auditing methods, including the use of advanced cryptographic techniques for anonymity. This study also includes a comparative analysis of our proposed framework against existing models in the domain. Our work aims to provide a comprehensive blueprint for enhancing security and privacy in blockchain-based IoT environments, paving the way for more secure and private digital ecosystems.
- Abstract(参考訳): IoT(Internet of Things)環境におけるブロックチェーンテクノロジの統合は、堅牢なセキュリティと強化されたプライバシを保証するための画期的なステップである。
本稿は、ブロックチェーンベースのIoTシステムを保護するための、ユニークな課題とソリューションについて、特にプライバシーとセキュリティを強化するための匿名監査に焦点を当てる。
ブロックチェーンの分散性とIoTコンテキストに適した高度なセキュリティプロトコルを組み合わせた,新たなフレームワークを提案する。
当社のアプローチの中心は、監査プロセスにおける匿名化技術の実装であり、ブロックチェーントランザクションの整合性と透明性を維持しながら、ユーザのプライバシを確保します。
IoT環境でのブロックチェーンのアーキテクチャを概説し、ワークフローと使用する特定のセキュリティメカニズムを強調します。
さらに,プライバシー保護ツールと匿名監査手法を統合したセキュリティプロトコルを導入する。
また、本研究では、提案したフレームワークをドメイン内の既存モデルに対して比較分析する。
私たちの研究は、ブロックチェーンベースのIoT環境におけるセキュリティとプライバシを強化し、よりセキュアでプライベートなデジタルエコシステムを実現するための、包括的な青写真を提供することを目的としています。
関連論文リスト
- FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
本研究は,IoT環境におけるデータプライバシとセキュリティの向上を目的とした,高度な学習(FL)フレームワークを提案する。
我々は、分散属性ベースの暗号化(DABE)、同型暗号化(HE)、セキュアマルチパーティ計算(SMPC)、技術を統合する。
従来のFLとは異なり、当社のフレームワークはIoTデバイス上で、セキュアで分散化された認証と暗号化を可能にする。
論文 参考訳(メタデータ) (2024-10-26T19:30:53Z) - Efficient Zero-Knowledge Proofs for Set Membership in Blockchain-Based Sensor Networks: A Novel OR-Aggregation Approach [20.821562115822182]
本稿では,ゼロ知識集合メンバシップ証明のための新しいOR集約手法を提案する。
我々は、包括的な理論基盤、詳細なプロトコル仕様、厳密なセキュリティ分析を提供する。
その結果, 証明サイズ, 生成時間, 検証効率が有意に向上した。
論文 参考訳(メタデータ) (2024-10-11T18:16:34Z) - SPOQchain: Platform for Secure, Scalable, and Privacy-Preserving Supply Chain Tracing and Counterfeit Protection [46.68279506084277]
この研究は、包括的なトレーサビリティと独創性検証を提供する、ブロックチェーンベースの新しいプラットフォームであるSPOQchainを提案する。
プライバシとセキュリティの側面を分析し、サプライチェーンのトレーシングの将来に対するSPOQチェーンの必要性と資格を実証する。
論文 参考訳(メタデータ) (2024-08-30T07:15:43Z) - AI-Protected Blockchain-based IoT environments: Harnessing the Future of Network Security and Privacy [0.0]
本稿では,ブロックチェーン対応IoTシステムにおいて,人工知能が果たす重要な役割について考察する。
AIと組み合わせると、これらのシステムはセキュリティプロトコルの自動化と最適化だけでなく、新しく進化するサイバー脅威に対応する能力を得る。
本稿は、AIによって強化されたブロックチェーン技術がIoT環境におけるネットワークセキュリティとプライバシに革命をもたらす方法について、より深く理解することを目的としている。
論文 参考訳(メタデータ) (2024-05-22T17:14:19Z) - Blockchains for Internet of Things: Fundamentals, Applications, and Challenges [38.29453164670072]
すべてのブロックチェーンシステムが、特定のIoTアプリケーションに適しているわけではない。
パブリックブロックチェーンは機密データを格納するのに適していない。
ブロックチェーンのアプリケーションを、エッジAI、通信、ヘルスケアの3つの重要なIoT領域で調査する。
論文 参考訳(メタデータ) (2024-05-08T04:25:57Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Large Language Models for Blockchain Security: A Systematic Literature Review [32.36531880327789]
大規模言語モデル(LLM)は、サイバーセキュリティの様々な領域にまたがる強力なツールとして登場した。
本研究の目的は,既存の研究を包括的に分析し,LLMがブロックチェーンシステムのセキュリティ向上にどのように貢献するかを明らかにすることである。
論文 参考訳(メタデータ) (2024-03-21T10:39:44Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Blockchained Federated Learning for Internet of Things: A Comprehensive
Survey [30.032413027090275]
この調査は、フェデレートラーニング(BlockFL)を包括的にレビューした
既存のBlockFLモデルを4つのIoT(Internet-of-Things)アプリケーションシナリオで比較する。
分析の結果、分散化と透明性の両面から、BlockFLは分散モデルトレーニングのためのセキュアで効果的なソリューションであることがわかった。
論文 参考訳(メタデータ) (2023-05-08T07:14:50Z) - An Overview of AI and Blockchain Integration for Privacy-Preserving [1.0155633074816937]
本稿では、AIとブロックチェーンの概要を示し、それらの組み合わせと、派生したプライバシ保護技術の組み合わせを要約する。
次に、データ暗号化、識別解除、多層分散台帳、k匿名メソッドにおける特定のアプリケーションシナリオについて検討する。
本稿では、認証管理、アクセス制御、データ保護、ネットワークセキュリティ、スケーラビリティを含む、AIブロックチェーン統合プライバシ保護システムの5つの重要な側面を評価する。
論文 参考訳(メタデータ) (2023-05-06T04:56:45Z) - FedBlockHealth: A Synergistic Approach to Privacy and Security in
IoT-Enabled Healthcare through Federated Learning and Blockchain [2.993954417409032]
医療におけるIoT(Internet of Things)デバイスの急速な採用は、データのプライバシ、セキュリティ、患者の安全性を維持する上で、新たな課題をもたらしている。
従来のアプローチでは、計算効率を維持しながら、セキュリティとプライバシを確保する必要がある。
本稿では,フェデレーション学習とブロックチェーン技術を組み合わせて,セキュアでプライバシ保護のソリューションを提供する,新しいハイブリッドアプローチを提案する。
論文 参考訳(メタデータ) (2023-04-16T01:55:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。