RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations
- URL: http://arxiv.org/abs/2506.03697v1
- Date: Wed, 04 Jun 2025 08:30:35 GMT
- Title: RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations
- Authors: Swagat Kumar, Jan-Nico Zaech, Colin Michael Wilmott, Luc Van Gool,
- Abstract summary: Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers.<n>We propose $rho$DARTS, a differentiable Quantum Architecture Search (QAS) algorithm that models the search process as the evolution of a quantum mixed state.
- Score: 48.670876200492415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers. When applied to machine learning tasks, VQAs give rise to NISQ-compatible Quantum Neural Networks (QNNs), which have been shown to outperform classical neural networks with a similar number of trainable parameters. While the quantum circuit structures of VQAs for physics simulations are determined by the physical properties of the systems, identifying effective QNN architectures for general machine learning tasks is a difficult challenge due to the lack of domain-specific priors. Indeed, existing Quantum Architecture Search (QAS) algorithms, adaptations of classical neural architecture search techniques, often overlook the inherent quantum nature of the circuits they produce. By approaching QAS from the ground-up and from a quantum perspective, we resolve this limitation by proposing $\rho$DARTS, a differentiable QAS algorithm that models the search process as the evolution of a quantum mixed state, emerging from the search space of quantum architectures. We validate our method by finding circuits for state initialization, Hamiltonian optimization, and image classification. Further, we demonstrate better convergence against existing QAS techniques and show improved robustness levels to noise.
Related papers
- Quantum Recurrent Embedding Neural Network [11.54075064463256]
We propose a quantum recurrent embedding neural network (QRENN) inspired by fast-track information pathways in ResNet.<n>We provide a rigorous proof of the trainability of QRENN circuits, demonstrating that this deep quantum neural network can avoid barren plateaus.<n>Our results highlight the power of recurrent data embedding in quantum neural networks and the potential for scalable quantum supervised learning.
arXiv Detail & Related papers (2025-06-16T07:50:31Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Topology-Driven Quantum Architecture Search Framework [2.9862856321580895]
We propose a Topology-Driven Quantum Architecture Search (TD-QAS) framework to identify high-performance quantum circuits.<n>By decoupling the extensive search space into topology and gate-type components, TD-QAS avoids exploring gate configurations within low-performance topologies.
arXiv Detail & Related papers (2025-02-20T05:05:53Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
We introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces.
We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments.
arXiv Detail & Related papers (2021-03-28T08:57:22Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Differentiable Quantum Architecture Search [15.045985536395479]
We propose a general framework of differentiable quantum architecture search (DQAS)
DQAS enables automated designs of quantum circuits in an end-to-end differentiable fashion.
arXiv Detail & Related papers (2020-10-16T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.