Artificial intelligence-enabled detection and assessment of Parkinson's disease using multimodal data: A survey
- URL: http://arxiv.org/abs/2502.10703v1
- Date: Sat, 15 Feb 2025 07:26:52 GMT
- Title: Artificial intelligence-enabled detection and assessment of Parkinson's disease using multimodal data: A survey
- Authors: Aite Zhao, Yongcan Liu, Xinglin Yu, Xinyue Xing,
- Abstract summary: Currently, there are no effective biomarkers for diagnosing Parkinson's disease, assessing its severity, or tracking its progression.
Numerous AI algorithms are now being used for PD diagnosis and treatment, capable of performing various classification tasks based on multimodal and heterogeneous disease symptom data.
They provide expressive feedback, including predicting the potential likelihood of PD, assessing the severity of individual or multiple symptoms, aiding in early detection, and evaluating rehabilitation and treatment effectiveness.
- Score: 2.06242362470764
- License:
- Abstract: The rapid emergence of highly adaptable and reusable artificial intelligence (AI) models is set to revolutionize the medical field, particularly in the diagnosis and management of Parkinson's disease (PD). Currently, there are no effective biomarkers for diagnosing PD, assessing its severity, or tracking its progression. Numerous AI algorithms are now being used for PD diagnosis and treatment, capable of performing various classification tasks based on multimodal and heterogeneous disease symptom data, such as gait, hand movements, and speech patterns of PD patients. They provide expressive feedback, including predicting the potential likelihood of PD, assessing the severity of individual or multiple symptoms, aiding in early detection, and evaluating rehabilitation and treatment effectiveness, thereby demonstrating advanced medical diagnostic capabilities. Therefore, this work provides a surveyed compilation of recent works regarding PD detection and assessment through biometric symptom recognition with a focus on machine learning and deep learning approaches, emphasizing their benefits, and exposing their weaknesses, and their impact in opening up newer research avenues. Additionally, it also presents categorized and characterized descriptions of the datasets, approaches, and architectures employed to tackle associated constraints. Furthermore, the paper explores the potential opportunities and challenges presented by data-driven AI technologies in the diagnosis of PD.
Related papers
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
Alzheimer's disease (AD) and vascular dementia (VaD) are the two most prevalent dementia types.
This paper presents an innovative multi-omics approach to accurately differentiate AD from VaD, achieving a diagnostic accuracy of 89.25%.
arXiv Detail & Related papers (2024-11-06T10:13:28Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Diagnosis of Parkinson's Disease Using EEG Signals and Machine Learning Techniques: A Comprehensive Study [1.2972104025246092]
This paper introduces an innovative method for diagnosing Parkinson's disease through the analysis of human EEG signals.
Our approach incorporates a comprehensive review of EEG signal analysis techniques and machine learning methods.
We have engineered an advanced SVM-based model optimized for Parkinson's disease diagnosis.
arXiv Detail & Related papers (2024-04-30T04:25:09Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
This study investigates the performance, interpretability, and clinical utility of knowledge-guided diagnosis model (KGDM) in the diagnosis of infectious keratitis (IK)
The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233.
The participants with collaboration achieved a performance exceeding that of both humans and AI.
arXiv Detail & Related papers (2024-01-14T02:10:54Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Machine learning for the diagnosis of Parkinson's disease: A systematic
review [15.463800489731373]
We conducted a systematic literature review of studies published until February 14, 2020, using the PubMed and IEEE Xplore databases.
A total of 209 studies were included, extracted for relevant information and presented in this systematic review.
These studies demonstrate a high potential for adaptation of machine learning methods and novel biomarkers in clinical decision making.
arXiv Detail & Related papers (2020-10-13T01:14:04Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.