A Methodological and Structural Review of Parkinsons Disease Detection Across Diverse Data Modalities
- URL: http://arxiv.org/abs/2505.00525v1
- Date: Thu, 01 May 2025 13:47:45 GMT
- Title: A Methodological and Structural Review of Parkinsons Disease Detection Across Diverse Data Modalities
- Authors: Abu Saleh Musa Miah, taro Suzuki, Jungpil Shin,
- Abstract summary: 10 million people globally diagnosed globally 1 to 1.8 per 1,000 individuals, according to reports by the Japan Times and the Parkinson Foundation.<n>This study presents a comprehensive review of PD recognition systems across diverse data modalities.<n>Based on over 347 articles from leading scientific databases, this review examines key aspects such as data collection methods, settings, feature representations, and system performance.
- Score: 0.6827423171182153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parkinsons Disease (PD) is a progressive neurological disorder that primarily affects motor functions and can lead to mild cognitive impairment (MCI) and dementia in its advanced stages. With approximately 10 million people diagnosed globally 1 to 1.8 per 1,000 individuals, according to reports by the Japan Times and the Parkinson Foundation early and accurate diagnosis of PD is crucial for improving patient outcomes. While numerous studies have utilized machine learning (ML) and deep learning (DL) techniques for PD recognition, existing surveys are limited in scope, often focusing on single data modalities and failing to capture the potential of multimodal approaches. To address these gaps, this study presents a comprehensive review of PD recognition systems across diverse data modalities, including Magnetic Resonance Imaging (MRI), gait-based pose analysis, gait sensory data, handwriting analysis, speech test data, Electroencephalography (EEG), and multimodal fusion techniques. Based on over 347 articles from leading scientific databases, this review examines key aspects such as data collection methods, settings, feature representations, and system performance, with a focus on recognition accuracy and robustness. This survey aims to serve as a comprehensive resource for researchers, providing actionable guidance for the development of next generation PD recognition systems. By leveraging diverse data modalities and cutting-edge machine learning paradigms, this work contributes to advancing the state of PD diagnostics and improving patient care through innovative, multimodal approaches.
Related papers
- Artificial intelligence-enabled detection and assessment of Parkinson's disease using multimodal data: A survey [2.06242362470764]
Currently, there are no effective biomarkers for diagnosing Parkinson's disease, assessing its severity, or tracking its progression.<n>Numerous AI algorithms are now being used for PD diagnosis and treatment, capable of performing various classification tasks based on multimodal and heterogeneous disease symptom data.<n>They provide expressive feedback, including predicting the potential likelihood of PD, assessing the severity of individual or multiple symptoms, aiding in early detection, and evaluating rehabilitation and treatment effectiveness.
arXiv Detail & Related papers (2025-02-15T07:26:52Z) - Machine Learning Strategies for Parkinson Tremor Classification Using Wearable Sensor Data [0.4222205362654437]
Machine learning (ML) has emerged as a powerful tool to enhance PD classification and diagnostic accuracy.<n>This survey comprehensively reviews current ML methodologies used in classifying Parkinsonian tremors.<n>We discuss challenges and discrepancies in current research and broader challenges in applying ML to PD diagnosis using wearable sensor data.
arXiv Detail & Related papers (2025-01-30T18:36:59Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Diagnosis of Parkinson's Disease Using EEG Signals and Machine Learning Techniques: A Comprehensive Study [1.2972104025246092]
This paper introduces an innovative method for diagnosing Parkinson's disease through the analysis of human EEG signals.
Our approach incorporates a comprehensive review of EEG signal analysis techniques and machine learning methods.
We have engineered an advanced SVM-based model optimized for Parkinson's disease diagnosis.
arXiv Detail & Related papers (2024-04-30T04:25:09Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - Machine learning for the diagnosis of Parkinson's disease: A systematic
review [15.463800489731373]
We conducted a systematic literature review of studies published until February 14, 2020, using the PubMed and IEEE Xplore databases.
A total of 209 studies were included, extracted for relevant information and presented in this systematic review.
These studies demonstrate a high potential for adaptation of machine learning methods and novel biomarkers in clinical decision making.
arXiv Detail & Related papers (2020-10-13T01:14:04Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.