論文の概要: GPN: A Joint Structural Learning Framework for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2205.05964v1
- Date: Thu, 12 May 2022 09:06:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-13 14:28:08.824286
- Title: GPN: A Joint Structural Learning Framework for Graph Neural Networks
- Title(参考訳): GPN:グラフニューラルネットワークのための統合構造学習フレームワーク
- Authors: Qianggang Ding, Deheng Ye, Tingyang Xu, Peilin Zhao
- Abstract要約: グラフ構造と下流タスクを同時に学習するGNNベースの共同学習フレームワークを提案する。
本手法は,この課題を解決するためのGNNベースの二段階最適化フレームワークである。
- 参考スコア(独自算出の注目度): 36.38529113603987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have been applied into a variety of graph tasks.
Most existing work of GNNs is based on the assumption that the given graph data
is optimal, while it is inevitable that there exists missing or incomplete
edges in the graph data for training, leading to degraded performance. In this
paper, we propose Generative Predictive Network (GPN), a GNN-based joint
learning framework that simultaneously learns the graph structure and the
downstream task. Specifically, we develop a bilevel optimization framework for
this joint learning task, in which the upper optimization (generator) and the
lower optimization (predictor) are both instantiated with GNNs. To the best of
our knowledge, our method is the first GNN-based bilevel optimization framework
for resolving this task. Through extensive experiments, our method outperforms
a wide range of baselines using benchmark datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、さまざまなグラフタスクに適用されている。
GNNの既存の作業のほとんどは、与えられたグラフデータが最適であるという仮定に基づいているが、トレーニング用のグラフデータに欠落や不完全なエッジがあることは避けられない。
本稿では,グラフ構造と下流タスクを同時に学習するGNNベースの共同学習フレームワークである生成予測ネットワーク(GPN)を提案する。
具体的には,上位最適化(生成子)と下位最適化(予測子)の両方をgnnでインスタンス化する,この共同学習タスクのための2レベル最適化フレームワークを開発した。
我々の知る限りでは、この課題を解決するための最初のGNNベースの二段階最適化フレームワークである。
広範な実験により,本手法はベンチマークデータセットを用いて,広範囲のベースラインを上回った。
関連論文リスト
- Graph Structure Prompt Learning: A Novel Methodology to Improve Performance of Graph Neural Networks [13.655670509818144]
グラフネットワーク(GNN)のトレーニングを強化するための新しいグラフ構造Prompt Learning法(GPL)を提案する。
GPLはタスク非依存のグラフ構造損失を利用して、GNNが下流タスクを同時に解決しながら固有のグラフ特性を学習することを奨励している。
11の実世界のデータセットの実験では、ニューラルネットワークによってトレーニングされた後、GNNはノード分類、グラフ分類、エッジタスクにおいて、元のパフォーマンスを大幅に上回った。
論文 参考訳(メタデータ) (2024-07-16T03:59:18Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Semantic Graph Neural Network with Multi-measure Learning for
Semi-supervised Classification [5.000404730573809]
近年,グラフニューラルネットワーク(GNN)が注目されている。
近年の研究では、GNNはグラフの複雑な基盤構造に弱いことが示されている。
半教師付き分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T06:17:11Z) - Self-Supervised Graph Structure Refinement for Graph Neural Networks [31.924317784535155]
グラフ構造学習(GSL)はグラフニューラルネットワーク(GNN)の隣接行列の学習を目的としている
既存のGSLの作業の多くは、推定隣接行列とGNNパラメータを下流タスクに最適化した共同学習フレームワークを適用している。
プレトレイン-ファインチューンパイプラインを用いたグラフ構造改善(GSR)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-12T02:01:46Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
グラフニューラルネットワーク(GNN)の大規模グラフトレーニングは、非常に難しい問題である
本稿では,既存の問題に対処するため,EnGCNという新たなアンサンブルトレーニング手法を提案する。
提案手法は,大規模データセット上でのSOTA(State-of-the-art)の性能向上を実現している。
論文 参考訳(メタデータ) (2022-10-14T03:43:05Z) - Efficient and effective training of language and graph neural network
models [36.00479096375565]
我々は,大規模言語モデルとグラフニューラルネットワークを協調的に学習する,効率的な言語モデルGNN(LM-GNN)を提案する。
本フレームワークの有効性は、BERTモデルの段階的微調整をまず異種グラフ情報に適用し、次にGNNモデルを用いて達成する。
我々は,LM-GNNフレームワークを異なるデータセットの性能で評価し,提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-06-22T00:23:37Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGMは、グラフニューラルネットワーク(GNN)ベースのグラフマッチングのパフォーマンスをトレーニングなしで向上するフレームワークである。
TFGMをさまざまなGNNに適用することは、ベースラインよりも有望な改善を示している。
論文 参考訳(メタデータ) (2022-01-14T09:04:46Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。