論文の概要: Efficient and effective training of language and graph neural network
models
- arxiv url: http://arxiv.org/abs/2206.10781v1
- Date: Wed, 22 Jun 2022 00:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-24 06:52:53.237042
- Title: Efficient and effective training of language and graph neural network
models
- Title(参考訳): 言語およびグラフニューラルネットワークモデルの効率的かつ効果的な訓練
- Authors: Vassilis N. Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, Jun Ma, Yi
Xu, Belinda Zeng, Trishul Chilimbi, George Karypis
- Abstract要約: 我々は,大規模言語モデルとグラフニューラルネットワークを協調的に学習する,効率的な言語モデルGNN(LM-GNN)を提案する。
本フレームワークの有効性は、BERTモデルの段階的微調整をまず異種グラフ情報に適用し、次にGNNモデルを用いて達成する。
我々は,LM-GNNフレームワークを異なるデータセットの性能で評価し,提案手法の有効性を示す。
- 参考スコア(独自算出の注目度): 36.00479096375565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can we combine heterogenous graph structure with text to learn high-quality
semantic and behavioural representations? Graph neural networks (GNN)s encode
numerical node attributes and graph structure to achieve impressive performance
in a variety of supervised learning tasks. Current GNN approaches are
challenged by textual features, which typically need to be encoded to a
numerical vector before provided to the GNN that may incur some information
loss. In this paper, we put forth an efficient and effective framework termed
language model GNN (LM-GNN) to jointly train large-scale language models and
graph neural networks. The effectiveness in our framework is achieved by
applying stage-wise fine-tuning of the BERT model first with heterogenous graph
information and then with a GNN model. Several system and design optimizations
are proposed to enable scalable and efficient training. LM-GNN accommodates
node and edge classification as well as link prediction tasks. We evaluate the
LM-GNN framework in different datasets performance and showcase the
effectiveness of the proposed approach. LM-GNN provides competitive results in
an Amazon query-purchase-product application.
- Abstract(参考訳): 異種グラフ構造をテキストと組み合わせて高品質な意味表現と行動表現を学習できるか?
グラフニューラルネットワーク(GNN)は、数値ノード属性とグラフ構造を符号化し、様々な教師付き学習タスクにおいて印象的なパフォーマンスを実現する。
現在のGNNアプローチは、通常、GNNに提供される前に数値ベクトルにエンコードする必要があるテキスト機能によって挑戦される。
本稿では,大規模言語モデルとグラフニューラルネットワークを協調的に学習する,効率的な言語モデルGNN(LM-GNN)を提案する。
本フレームワークの有効性は、BERTモデルの段階的微調整をまず異種グラフ情報に適用し、次にGNNモデルを用いて達成する。
スケーラブルで効率的なトレーニングを実現するために,システムと設計の最適化が提案されている。
LM-GNNはノードとエッジの分類とリンク予測タスクに対応している。
LM-GNNフレームワークを異なるデータセットの性能で評価し,提案手法の有効性を示す。
LM-GNNはAmazonのクエリ購入製品アプリケーションで競合する結果を提供する。
関連論文リスト
- LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
我々は,GNN設計プロセスの合理化とLarge Language Models(LLM)の利点を活用して,下流タスクにおけるGNNの性能向上を目指す。
我々は,LLMs-as-Consultants(LLMs-as-Consultants)という新たなパラダイムを策定し,LLMとGNNを対話的に統合する。
両グラフのノード分類におけるLOGINの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2024-05-22T18:17:20Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Robust Graph Neural Networks using Weighted Graph Laplacian [1.8292714902548342]
グラフニューラルネットワーク(GNN)は、入力データにおけるノイズや敵攻撃に対して脆弱である。
重み付きラプラシアンGNN(RWL-GNN)として知られるGNNの強化のための汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-03T05:36:35Z) - Towards Understanding Graph Neural Networks: An Algorithm Unrolling
Perspective [9.426760895586428]
本稿では,グラフ信号の復号化問題に対して,truncated Optimizationアルゴリズムに基づいて構築されたアンロールネットワークのクラスを紹介する。
GNNモデルのトレーニングプロセスは、低レベルのGSD問題による二段階最適化問題の解決と見なすことができる。
UGDGNNという表現モデル、すなわち、非線形勾配勾配GNNは、魅力的な理論的性質を継承する。
論文 参考訳(メタデータ) (2022-06-09T12:54:03Z) - GPN: A Joint Structural Learning Framework for Graph Neural Networks [36.38529113603987]
グラフ構造と下流タスクを同時に学習するGNNベースの共同学習フレームワークを提案する。
本手法は,この課題を解決するためのGNNベースの二段階最適化フレームワークである。
論文 参考訳(メタデータ) (2022-05-12T09:06:04Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。