論文の概要: Graph Neural Networks Powered by Encoder Embedding for Improved Node Learning
- arxiv url: http://arxiv.org/abs/2507.11732v1
- Date: Tue, 15 Jul 2025 21:01:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.152026
- Title: Graph Neural Networks Powered by Encoder Embedding for Improved Node Learning
- Title(参考訳): ノード学習改善のためのエンコーダ埋め込みによるグラフニューラルネットワーク
- Authors: Shiyu Chen, Cencheng Shen, Youngser Park, Carey E. Priebe,
- Abstract要約: グラフニューラルネットワーク(GNN)は、幅広いノードレベルのグラフ学習タスクのための強力なフレームワークとして登場した。
本稿では,1ホットグラフエンコーダ埋め込み (GEE) という統計的手法を用いて,高品質な初期ノード特徴を生成する。
本研究では,教師なし環境と教師なし環境の両方にまたがる広範囲なシミュレーションと実世界の実験を通して,その効果を実証する。
- 参考スコア(独自算出の注目度): 17.31465642587528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have emerged as a powerful framework for a wide range of node-level graph learning tasks. However, their performance is often constrained by reliance on random or minimally informed initial feature representations, which can lead to slow convergence and suboptimal solutions. In this paper, we leverage a statistically grounded method, one-hot graph encoder embedding (GEE), to generate high-quality initial node features that enhance the end-to-end training of GNNs. We refer to this integrated framework as the GEE-powered GNN (GG), and demonstrate its effectiveness through extensive simulations and real-world experiments across both unsupervised and supervised settings. In node clustering, GG consistently achieves state-of-the-art performance, ranking first across all evaluated real-world datasets, while exhibiting faster convergence compared to the standard GNN. For node classification, we further propose an enhanced variant, GG-C, which concatenates the outputs of GG and GEE and outperforms competing baselines. These results confirm the importance of principled, structure-aware feature initialization in realizing the full potential of GNNs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、幅広いノードレベルのグラフ学習タスクのための強力なフレームワークとして登場した。
しかし、それらの性能は、しばしばランダムまたは最小限のインフォームドされた初期特徴表現に依存して制約されるため、収束が遅く、最適でない解が得られる。
本稿では,GNNのエンドツーエンドトレーニングを向上する高品質な初期ノード特徴を生成するために,統計学的手法である1ホットグラフエンコーダ埋め込み(GEE)を利用する。
我々は、この統合フレームワークをGEEベースのGNN(GG)と呼び、教師なしと教師なしの両方の環境において、広範囲なシミュレーションと実世界の実験を通して、その効果を実証する。
ノードクラスタリングでは、GGは一貫して最先端のパフォーマンスを達成し、評価されたすべての実世界のデータセットにランクインすると同時に、標準のGNNよりも高速な収束を示す。
ノード分類において、GGとGEEの出力を連結し、競合するベースラインを上回る拡張型GG-Cを提案する。
これらの結果は,GNNの潜在能力を実現する上で,基本的,構造を意識した特徴初期化の重要性を裏付けるものである。
関連論文リスト
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GPN: A Joint Structural Learning Framework for Graph Neural Networks [36.38529113603987]
グラフ構造と下流タスクを同時に学習するGNNベースの共同学習フレームワークを提案する。
本手法は,この課題を解決するためのGNNベースの二段階最適化フレームワークである。
論文 参考訳(メタデータ) (2022-05-12T09:06:04Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
教師付きおよび半教師付き設定におけるグラフニューラルネットワーク(GNN)を用いた帰納ノード分類の課題を考察する。
本稿では,既存のGNNの表現力を高めるための一般集団学習手法を提案する。
実世界の5つのネットワークデータセットの性能評価を行い、ノード分類精度が一貫した顕著な改善を示した。
論文 参考訳(メタデータ) (2020-03-26T22:07:28Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。