Detailed Balanced Chemical Reaction Networks as Generalized Boltzmann
Machines
- URL: http://arxiv.org/abs/2205.06313v1
- Date: Thu, 12 May 2022 18:59:43 GMT
- Title: Detailed Balanced Chemical Reaction Networks as Generalized Boltzmann
Machines
- Authors: William Poole, Thomas Ouldridge, Manoj Gopalkrishnan, and Erik Winfree
- Abstract summary: We show how a biochemical computer can use intrinsic chemical noise to perform complex computations.
We also use our explicit physical model to derive thermodynamic costs of inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Can a micron sized sack of interacting molecules understand, and adapt to a
constantly-fluctuating environment? Cellular life provides an existence proof
in the affirmative, but the principles that allow for life's existence are far
from being proven. One challenge in engineering and understanding biochemical
computation is the intrinsic noise due to chemical fluctuations. In this paper,
we draw insights from machine learning theory, chemical reaction network
theory, and statistical physics to show that the broad and biologically
relevant class of detailed balanced chemical reaction networks is capable of
representing and conditioning complex distributions. These results illustrate
how a biochemical computer can use intrinsic chemical noise to perform complex
computations. Furthermore, we use our explicit physical model to derive
thermodynamic costs of inference.
Related papers
- Learning Chemical Reaction Representation with Reactant-Product Alignment [50.28123475356234]
This paper introduces modelname, a novel chemical reaction representation learning model tailored for a variety of organic-reaction-related tasks.
By integrating atomic correspondence between reactants and products, our model discerns the molecular transformations that occur during the reaction, thereby enhancing the comprehension of the reaction mechanism.
We have designed an adapter structure to incorporate reaction conditions into the chemical reaction representation, allowing the model to handle diverse reaction conditions and adapt to various datasets and downstream tasks, e.g., reaction performance prediction.
arXiv Detail & Related papers (2024-11-26T17:41:44Z) - The Origin and Evolution of Information Handling [0.6963971634605796]
We explain how information control emerged ab initio and how primitive control mechanisms in life might have evolved, becoming increasingly refined.
By describing precisely the primordial transitions in chemistry-based computation, our framework is capable of explaining the above-mentioned gaps.
Being compatible with the free energy principle, we have developed a computational enactivist theoretical framework that could be able to describe from the origin of life to high-level cognition.
arXiv Detail & Related papers (2024-04-05T19:35:38Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Autonomous Learning of Generative Models with Chemical Reaction Network
Ensembles [0.0]
We develop a general architecture whereby a broad class of chemical systems can autonomously learn complex distributions.
Our construction takes the form of a chemical implementation of machine learning's optimization workhorse: gradient descent on the relative entropy cost function.
arXiv Detail & Related papers (2023-11-02T03:46:23Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - A linear response framework for simulating bosonic and fermionic
correlation functions illustrated on quantum computers [58.720142291102135]
Lehmann formalism for obtaining response functions in linear response has no direct link to experiment.
Within the context of quantum computing, we make the experiment an inextricable part of the quantum simulation.
We show that both bosonic and fermionic Green's functions can be obtained, and apply these ideas to the study of a charge-density-wave material.
arXiv Detail & Related papers (2023-02-20T19:01:02Z) - Differentiable Programming of Chemical Reaction Networks [63.948465205530916]
Chemical reaction networks are one of the most fundamental computational substrates used by nature.
We study well-mixed single-chamber systems, as well as systems with multiple chambers separated by membranes.
We demonstrate that differentiable optimisation, combined with proper regularisation, can discover non-trivial sparse reaction networks.
arXiv Detail & Related papers (2023-02-06T11:41:14Z) - A modular quantum-classical framework for simulating chemical reaction
pathways accurately [0.0]
We present a modular quantum-classical hybrid framework to accurately simulate chemical reaction pathway.
We demonstrate our framework by accurately tracing the isomerization pathway for small organic molecules.
This framework can now be readily applied to study other 'active' molecules from the pharma and chemical industries.
arXiv Detail & Related papers (2022-10-17T10:41:53Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - A Quantum Finite Automata Approach to Modeling the Chemical Reactions [0.0]
The study of chemical information processing with quantum computational models is a natural goal.
We have modeled chemical reactions using two-way quantum finite automata, which are halted in linear time.
It has been proven that computational versatility can be increased by combining chemical accept/reject signatures and quantum automata models.
arXiv Detail & Related papers (2020-07-08T09:15:33Z) - Autonomous Discovery of Unknown Reaction Pathways from Data by Chemical
Reaction Neural Network [0.0]
Chemical reactions occur in energy, environmental, biological, and many other natural systems.
Here, we present a neural network approach that autonomously discovers reaction pathways from the time-resolved species concentration data.
The proposed Chemical Reaction Neural Network (CRNN), by design, satisfies the fundamental physics laws, including the Law of Mass Action and the Arrhenius Law.
arXiv Detail & Related papers (2020-02-20T23:36:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.