論文の概要: KASAM: Spline Additive Models for Function Approximation
- arxiv url: http://arxiv.org/abs/2205.06376v1
- Date: Thu, 12 May 2022 21:50:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-16 23:51:20.784937
- Title: KASAM: Spline Additive Models for Function Approximation
- Title(参考訳): KASAM: 関数近似のためのスプライン付加モデル
- Authors: Heinrich van Deventer, Pieter Janse van Rensburg, Anna Bosman
- Abstract要約: 破滅的な忘れ方は、特別に設計されたモデルと訓練技術によって緩和することができる。
本稿では,新しいスプライン付加モデル(SAM)について概説する。
SAMは、多くの実用的なタスクに対して十分な表現力を持つ本質的なメモリ保持を示す。
SAM と KASAM のメモリ保持、表現力、限界を解析的かつ実証的に説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have been criticised for their inability to perform continual
learning due to catastrophic forgetting and rapid unlearning of a past concept
when a new concept is introduced. Catastrophic forgetting can be alleviated by
specifically designed models and training techniques. This paper outlines a
novel Spline Additive Model (SAM). SAM exhibits intrinsic memory retention with
sufficient expressive power for many practical tasks, but is not a universal
function approximator. SAM is extended with the Kolmogorov-Arnold
representation theorem to a novel universal function approximator, called the
Kolmogorov-Arnold Spline Additive Model - KASAM. The memory retention,
expressive power and limitations of SAM and KASAM are illustrated analytically
and empirically. SAM exhibited robust but imperfect memory retention, with
small regions of overlapping interference in sequential learning tasks. KASAM
exhibited greater susceptibility to catastrophic forgetting. KASAM in
combination with pseudo-rehearsal training techniques exhibited superior
performance in regression tasks and memory retention.
- Abstract(参考訳): ニューラルネットワークは、新しい概念が導入されたとき、過去の概念の破滅的な忘れと急速な未学習のために、継続的な学習ができないことで批判されている。
壊滅的な忘れは、特別に設計されたモデルと訓練技術によって軽減される。
本稿では, Spline Additive Model (SAM)について概説する。
SAMは多くの実用的なタスクに対して十分な表現力を持つ固有のメモリ保持を示すが、普遍的な関数近似器ではない。
sam は kolmogorov-arnold representation theorem を用いて、kolmogorov-arnold spline additive model (kasam) と呼ばれる新しい普遍関数近似子へと拡張される。
SAM と KASAM のメモリ保持、表現力、限界を解析的かつ実証的に説明する。
SAMは、連続的な学習タスクで重複する干渉の小さな領域で、堅牢だが不完全な記憶保持を示す。
KASAMは破滅的な忘れやすさを示した。
KASAMと擬似リハーサルトレーニングの併用により、回帰作業や記憶保持において優れた性能を示した。
関連論文リスト
- Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training [47.25594539120258]
Sharpness-Aware Minimization (SAM) はトレーニングの遅滞時に効率よくフラットなミニマを選択する。
SAMの訓練の終わりに応用されたいくつかのエポックでさえ、完全なSAMトレーニングとほぼ同じ一般化と解のシャープネスをもたらす。
我々は、最終解の物性を形作る上で、最終相で選択した最適化法がより重要であると推測する。
論文 参考訳(メタデータ) (2024-10-14T10:56:42Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning [38.09011520275557]
クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに、非定常データストリームから新しいクラスを学ぶためのモデルをトレーニングすることを目的としている。
本稿では、ニューラルネットワークの動作をCILに適応させるニューラルネットワークユニットダイナミクスを調整し、新しい種類のコネクショナリストモデルを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:47:03Z) - Why Does Sharpness-Aware Minimization Generalize Better Than SGD? [102.40907275290891]
シャープネス・アウェアの最小化(SAM)がデータモデルや2層畳み込みReLUネットワークに対してグラディエントDescent(SGD)よりも優れていることを示す。
その結果,SAMの利点,特に早期の雑音学習を防止し,特徴のより効果的な学習を容易にする能力について解説した。
論文 参考訳(メタデータ) (2023-10-11T07:51:10Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
SAM(Self-attention mechanism)は、人工知能の様々な分野で広く使われている。
常微分方程式(ODE)の高精度解における固有剛性現象(SP)は,高性能ニューラルネットワーク(NN)にも広く存在することを示す。
SAMは、本質的なSPを測定するためのモデルの表現能力を高めることができる剛性対応のステップサイズ適応器でもあることを示す。
論文 参考訳(メタデータ) (2023-08-19T08:17:41Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
シャープネス認識(SAM)は、ディープニューラルネットワークのトレーニングにおいて、より一般的なものにするため、広範囲に研究されている。
AdaSAMと呼ばれる適応的な学習摂動と運動量加速度をSAMに統合することはすでに検討されている。
いくつかのNLPタスクにおいて,SGD,AMS,SAMsGradと比較して,AdaSAMが優れた性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T15:12:42Z) - mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization [20.560184120992094]
シャープネス・アウェアの最小化手法は、フラットな最小化に向けて勾配降下法を操る基本損失関数を変更する。
我々は最近開発されたフラットネス解析のためのよく研究された一般的なフレームワークを拡張し、SAMがSGDよりもフラットなミニマを達成し、mSAMがSAMよりもフラットなミニマを達成できることを理論的に示す。
論文 参考訳(メタデータ) (2023-02-19T23:27:12Z) - SAM operates far from home: eigenvalue regularization as a dynamical
phenomenon [15.332235979022036]
シャープネス認識最小化(SAM)アルゴリズムは、ロス・ヘッセンの大きな固有値を制御することが示されている。
SAMは学習軌跡全体を通して固有値の強い正規化を提供することを示す。
本理論は,学習速度とSAM半径パラメータの関数として最大固有値を予測する。
論文 参考訳(メタデータ) (2023-02-17T04:51:20Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
シャープネス・アウェア最小化(SAM)は、基礎となる損失関数を修正し、フラットなミニマへ導出する方法を導出する。
近年の研究ではmSAMがSAMよりも精度が高いことが示唆されている。
本稿では,様々なタスクやデータセットにおけるmSAMの包括的評価について述べる。
論文 参考訳(メタデータ) (2022-12-07T00:37:55Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。