論文の概要: Principal-Agent Hypothesis Testing
- arxiv url: http://arxiv.org/abs/2205.06812v3
- Date: Mon, 15 Apr 2024 18:38:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 03:19:56.146409
- Title: Principal-Agent Hypothesis Testing
- Title(参考訳): プリンシパル・エージェント仮説テスト
- Authors: Stephen Bates, Michael I. Jordan, Michael Sklar, Jake A. Soloff,
- Abstract要約: 我々は、規制当局(プリンシパル)と医薬品会社のような実験者(エージェント)との関係を考察する。
医薬品の有効性は規制当局に知られていないため、医薬品会社は規制当局に有効性を証明するために費用がかかる裁判を行わなければならない。
エージェントの戦略行動に頑健なプロトコルを設計する方法を示し、戦略参加者の存在下で最適なプロトコルを導出する。
- 参考スコア(独自算出の注目度): 54.154244569974864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consider the relationship between a regulator (the principal) and an experimenter (the agent) such as a pharmaceutical company. The pharmaceutical company wishes to sell a drug for profit, whereas the regulator wishes to allow only efficacious drugs to be marketed. The efficacy of the drug is not known to the regulator, so the pharmaceutical company must run a costly trial to prove efficacy to the regulator. Critically, the statistical protocol used to establish efficacy affects the behavior of a strategic, self-interested agent; a lower standard of statistical evidence incentivizes the agent to run more trials that are less likely to be effective. The interaction between the statistical protocol and the incentives of the pharmaceutical company is crucial for understanding this system and designing protocols with high social utility. In this work, we discuss how the regulator can set up a protocol with payoffs based on statistical evidence. We show how to design protocols that are robust to an agent's strategic actions, and derive the optimal protocol in the presence of strategic entrants.
- Abstract(参考訳): 規制当局(プリンシパル)と、医薬品会社のような実験者(エージェント)との関係を考える。
製薬会社は利益のために薬の販売を希望する一方、規制当局は効力のある薬のみの販売を認めることを望んでいる。
医薬品の有効性は規制当局に知られていないため、医薬品会社は規制当局に有効性を証明するために費用がかかる裁判を行わなければならない。
批判的に、有効性を確立するために使用される統計プロトコルは、戦略的な自己関心のエージェントの行動に影響を与える。
統計プロトコルと製薬会社のインセンティブとの相互作用は、このシステムを理解し、高い社会的ユーティリティでプロトコルを設計するために重要である。
そこで本研究では,統計的証拠に基づいて,規制当局が報酬付きプロトコルを構築する方法について論じる。
エージェントの戦略行動に頑健なプロトコルを設計する方法を示し、戦略参加者の存在下で最適なプロトコルを導出する。
関連論文リスト
- DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
本稿では,最先端の機械学習技術と知識統合を用いた医薬品再調達プロセスを強化するためのマルチエージェントフレームワークを提案する。
AIエージェントは、DTIモデルを訓練し、知識グラフエージェントはDGIdbを使用してDTIを系統的に抽出する。
これらのエージェントからの出力を統合することで、外部データベースを含む多様なデータソースを効果的に活用し、実行可能な再資源化候補を提案する。
論文 参考訳(メタデータ) (2024-08-23T21:24:59Z) - Conformal Policy Learning for Sensorimotor Control Under Distribution
Shifts [61.929388479847525]
本稿では,センサコントローラの観測値の分布変化を検知・応答する問題に焦点をあてる。
鍵となる考え方は、整合量子を入力として取ることができるスイッチングポリシーの設計である。
本稿では, 基本方針を異なる特性で切り替えるために, 共形量子関数を用いてこのようなポリシーを設計する方法を示す。
論文 参考訳(メタデータ) (2023-11-02T17:59:30Z) - Incentive-Theoretic Bayesian Inference for Collaborative Science [59.15962177829337]
未知のパラメータについて、プライベートな先行エージェントが存在する場合の仮説テストについて検討する。
エージェントの戦略行動によって明らかにされる情報を活用する統計的推論を行う方法を示す。
論文 参考訳(メタデータ) (2023-07-07T17:59:01Z) - Many learning agents interacting with an agent-based market model [0.0]
反応型エージェントベースモデルと相互作用する最適な実行取引エージェントの学習のダイナミクスを考察する。
このモデルは、最適な実行学習エージェント、最小限の知的流動性テイカー、高速な電子流動性プロバイダによって表される3つの栄養レベルを持つ市場エコロジーを表している。
学習可能な最適な実行エージェントを組み込むことで、経験的データと同じ複雑さで動的に生成できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-03-13T18:15:52Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
マルチアーム・バンディット・フレームワークを用いてワクチンのアロケーション戦略を評価する新しい手法を提案する。
$m$-top Exploringにより、アルゴリズムは最高のユーティリティを期待する$m$ポリシーを学ぶことができる。
ベルギーのCOVID-19流行を個人モデルSTRIDEを用いて検討し、予防接種方針のセットを学習する。
論文 参考訳(メタデータ) (2023-01-30T12:22:30Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
人間の開発者は、RLエージェントがテスト時にうまく機能することを検証しなければならない。
本手法では, エージェントの挙動をより広い軌道分布で示すことにより, エージェントの挙動を分布変化下で表現する。
本研究では,2つのエージェント検証タスクのうちの1つに対して,ベースライン法よりも優れたスコアを得られることを示す。
論文 参考訳(メタデータ) (2022-01-29T00:52:37Z) - Drug Package Recommendation via Interaction-aware Graph Induction [44.493214829186115]
本稿では,DPR on Weighted Graph (DPR-WG) とDPR on Attributed Graph (DPR-AG) の2つのバリエーションを持つ新しいDPRフレームワークを提案する。
詳しくは、マスク層を用いて患者の状態の影響を捉え、最終グラフ誘導タスクにグラフニューラルネットワーク(GNN)を利用してパッケージを埋め込む。
論文 参考訳(メタデータ) (2021-02-06T12:51:00Z) - Reinforcement Learning with Efficient Active Feature Acquisition [59.91808801541007]
実生活では、情報取得は患者の医療検査に該当する可能性がある。
本稿では,アクティブな特徴獲得ポリシーを学習するモデルに基づく強化学習フレームワークを提案する。
この成功の鍵は、部分的に観察された状態から高品質な表現を学ぶ新しい逐次変分自動エンコーダである。
論文 参考訳(メタデータ) (2020-11-02T08:46:27Z) - Bounded Incentives in Manipulating the Probabilistic Serial Rule [8.309903898123526]
確率的シリアルはインセンティブ互換ではない。
戦略行動による実質的な実用性の向上は、自己関心のエージェントがメカニズムを操作するきっかけとなる。
このメカニズムのインセンティブ比が$frac32$であることを示す。
論文 参考訳(メタデータ) (2020-01-28T23:53:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。