論文の概要: Optimal Parameter-free Online Learning with Switching Cost
- arxiv url: http://arxiv.org/abs/2205.06846v1
- Date: Fri, 13 May 2022 18:44:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 16:53:45.308966
- Title: Optimal Parameter-free Online Learning with Switching Cost
- Title(参考訳): スイッチングコストを考慮した最適パラメータフリーオンライン学習
- Authors: Zhiyu Zhang, Ashok Cutkosky, Ioannis Ch. Paschalidis
- Abstract要約: オンライン学習における自由とは、後ろ向きの最適決定に対するアルゴリズムの適応性を指す。
本稿では,パラメータフリーで要求される楽観的な更新を,スイッチングコストを前提として,そのようなアルゴリズムを設計する。
本稿では,オンライン線形最適化 (OLO) のための簡易かつ強力なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 47.415099037249085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-freeness in online learning refers to the adaptivity of an
algorithm with respect to the optimal decision in hindsight. In this paper, we
design such algorithms in the presence of switching cost - the latter penalizes
the optimistic updates required by parameter-freeness, leading to a delicate
design trade-off. Based on a novel dual space scaling strategy, we propose a
simple yet powerful algorithm for Online Linear Optimization (OLO) with
switching cost, which improves the existing suboptimal regret bound [ZCP22a] to
the optimal rate. The obtained benefit is extended to the expert setting, and
the practicality of our algorithm is demonstrated through a sequential
investment task.
- Abstract(参考訳): オンライン学習におけるパラメータ自由度とは、後ろ向きの最適決定に対するアルゴリズムの適応性を指す。
本稿では,パラメータフリーで要求される楽観的な更新をペナルティ化したアルゴリズムを,スイッチングコストの存在下で設計し,微妙な設計トレードオフをもたらす。
提案手法は,オンライン線形最適化のための単純かつ強力なアルゴリズムであり,スイッチングコストを伴い,既存サブオプティマティブ・プリットバウンド [zcp22a] を最適レートに改善する。
得られた利益をエキスパート設定に拡張し、逐次投資タスクを通じてアルゴリズムの実用性を実証する。
関連論文リスト
- General framework for online-to-nonconvex conversion: Schedule-free SGD is also effective for nonconvex optimization [40.254487017289975]
本研究では,A. Defazioらが開発したスケジュールなし手法の有効性について検討する。
具体的には、非平滑なSGD非最適化問題に対するスケジュールなし繰り返しを示す。
論文 参考訳(メタデータ) (2024-11-11T15:25:48Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Efficient Methods for Non-stationary Online Learning [67.3300478545554]
本稿では, 動的後悔と適応的後悔を最適化する効率的な手法を提案し, ラウンド当たりの投影回数を$mathcalO(log T)$から$ $1$まで削減した。
本手法は,パラメータフリーオンライン学習において開発された還元機構を基礎として,非定常オンライン手法に非自明なツイストを必要とする。
論文 参考訳(メタデータ) (2023-09-16T07:30:12Z) - Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs
with Short Burn-In Time [13.545356254920584]
本稿では,分散削減を利用したモデルフリーアルゴリズムと,実行方針を低速かつ適応的に切り替える新しい手法を提案する。
これは割引設定における最初の後悔の最適モデルフリーアルゴリズムであり、バーンイン時間の短縮によるメリットがある。
論文 参考訳(メタデータ) (2023-05-24T20:22:43Z) - Online Joint Assortment-Inventory Optimization under MNL Choices [14.530542487845732]
本稿では,MNL(Multinomial Logit)選択モデルに従えば,各顧客の選択行動が従うと仮定する,オンラインジョイント・アソート・インベントリ最適化問題について考察する。
本稿では,オンラインの品揃えと在庫の意思決定における探索と搾取を効果的にバランスさせる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-04T09:25:34Z) - Smoothed Online Combinatorial Optimization Using Imperfect Predictions [27.201074566335222]
本研究では,不完全な予測モデルが利用できる場合のスムーズなオンライン最適化問題について検討する。
有限時間地平線計画に予測を用いることで, 全体の予測不確かさと追加の切り替えコストに依存して, 後悔を招くことを示す。
本アルゴリズムは,合成オンライン分散ストリーミング問題において,他のベースラインと比較して,累積的後悔度が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-04-23T02:30:39Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - Cost-Efficient Online Hyperparameter Optimization [94.60924644778558]
実験の単一実行でヒトのエキスパートレベルのパフォーマンスに達するオンラインHPOアルゴリズムを提案します。
提案するオンラインhpoアルゴリズムは,実験の1回で人間のエキスパートレベルのパフォーマンスに到達できるが,通常のトレーニングに比べて計算オーバーヘッドは少ない。
論文 参考訳(メタデータ) (2021-01-17T04:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。