Exploring How Machine Learning Practitioners (Try To) Use Fairness
Toolkits
- URL: http://arxiv.org/abs/2205.06922v2
- Date: Tue, 10 Jan 2023 07:22:51 GMT
- Title: Exploring How Machine Learning Practitioners (Try To) Use Fairness
Toolkits
- Authors: Wesley Hanwen Deng, Manish Nagireddy, Michelle Seng Ah Lee, Jatinder
Singh, Zhiwei Steven Wu, Kenneth Holstein, Haiyi Zhu
- Abstract summary: We investigate how industry practitioners (try to) work with existing fairness toolkits.
We identify several opportunities for fairness toolkits to better address practitioner needs.
We highlight implications for the design of future open-source fairness toolkits.
- Score: 35.7895677378462
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen the development of many open-source ML fairness
toolkits aimed at helping ML practitioners assess and address unfairness in
their systems. However, there has been little research investigating how ML
practitioners actually use these toolkits in practice. In this paper, we
conducted the first in-depth empirical exploration of how industry
practitioners (try to) work with existing fairness toolkits. In particular, we
conducted think-aloud interviews to understand how participants learn about and
use fairness toolkits, and explored the generality of our findings through an
anonymous online survey. We identified several opportunities for fairness
toolkits to better address practitioner needs and scaffold them in using
toolkits effectively and responsibly. Based on these findings, we highlight
implications for the design of future open-source fairness toolkits that can
support practitioners in better contextualizing, communicating, and
collaborating around ML fairness efforts.
Related papers
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
This paper focuses on bridging the comprehension gap between Large Language Models and external tools.
We propose a novel framework, DRAFT, aimed at Dynamically refining tool documentation.
Extensive experiments on multiple datasets demonstrate that DRAFT's iterative, feedback-based refinement significantly ameliorates documentation quality.
arXiv Detail & Related papers (2024-10-10T17:58:44Z) - What You Need is What You Get: Theory of Mind for an LLM-Based Code Understanding Assistant [0.0]
A growing number of tools have used Large Language Models (LLMs) to support developers' code understanding.
In this study, we designed an LLM-based conversational assistant that provides a personalized interaction based on inferred user mental state.
Our results provide insights for researchers and tool builders who want to create or improve LLM-based conversational assistants to support novices in code understanding.
arXiv Detail & Related papers (2024-08-08T14:08:15Z) - What Affects the Stability of Tool Learning? An Empirical Study on the Robustness of Tool Learning Frameworks [33.51887014808227]
This paper explores the impact of both internal and external factors on the performance of tool learning frameworks.
We find several insightful conclusions for future work, including the observation that LLMs can benefit significantly from increased trial and exploration.
arXiv Detail & Related papers (2024-07-03T11:06:05Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
Existing large language models (LLMs) only reach a correctness rate in the range of 30% to 60%.
We propose a biologically inspired method for tool-augmented LLMs, simulated trial and error (STE)
STE orchestrates three key mechanisms for successful tool use behaviors in the biological system: trial and error, imagination, and memory.
arXiv Detail & Related papers (2024-03-07T18:50:51Z) - Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda
for Developing Practical Guidelines and Tools [18.513353100744823]
Recent work has called on the ML community to take a more holistic approach to tackle fairness issues.
We first demonstrate that without clear guidelines and toolkits, even individuals with specialized ML knowledge find it challenging to hypothesize how various design choices influence model behavior.
We then consult the fair-ML literature to understand the progress to date toward operationalizing the pipeline-aware approach.
arXiv Detail & Related papers (2023-09-29T15:48:26Z) - FairLay-ML: Intuitive Remedies for Unfairness in Data-Driven
Social-Critical Algorithms [13.649336187121095]
This thesis explores whether open-sourced machine learning (ML) model explanation tools can allow a layman to visualize, understand, and suggest intuitive remedies to unfairness in ML-based decision-support systems.
This thesis presents FairLay-ML, a proof-of-concept GUI integrating some of the most promising tools to provide intuitive explanations for unfair logic in ML models.
arXiv Detail & Related papers (2023-07-11T06:05:06Z) - LLM-based Interaction for Content Generation: A Case Study on the
Perception of Employees in an IT department [85.1523466539595]
This paper presents a questionnaire survey to identify the intention to use generative tools by employees of an IT company.
Our results indicate a rather average acceptability of generative tools, although the more useful the tool is perceived to be, the higher the intention seems to be.
Our analyses suggest that the frequency of use of generative tools is likely to be a key factor in understanding how employees perceive these tools in the context of their work.
arXiv Detail & Related papers (2023-04-18T15:35:43Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
A large portion of fairness research has gone to producing tools that machine learning practitioners can use to audit for bias while designing their algorithms.
There is a lack of application of these fairness solutions in practice.
This review provides an in-depth summary of the algorithmic bias issues that have been defined and the fairness solution space that has been proposed.
arXiv Detail & Related papers (2021-12-10T17:51:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.