Quantum entropy and QCD factorization for low-$Q^2$ $ν$DIS
- URL: http://arxiv.org/abs/2412.14257v1
- Date: Wed, 18 Dec 2024 19:00:05 GMT
- Title: Quantum entropy and QCD factorization for low-$Q^2$ $ν$DIS
- Authors: Henry Bloss, Brandon Kriesten, T. J. Hobbs,
- Abstract summary: We introduce a novel approach based on the quantum entropy associated with continuous distributions in QCD, using it to characterize the limits of factorization theorems relevant for the description of neutrino DIS.
This work suggests an additional avenue for dissecting factorization-breaking dynamics through the quantum entropy, which could also play a role in quantum simulations of related systems.
- Score: 0.0
- License:
- Abstract: Deeply inelastic scattering (DIS) is an essential process for exploring the structure of visible matter and testing the standard model. At the same time, the theoretical interpretation of DIS measurements depends on QCD factorization theorems whose validity deteriorates at the lower values of $Q^2$ and $W^2$ typical of neutrino DIS in accelerator-based oscillation searches. For this reason, progress in understanding the origin and limits of QCD factorization is invaluable to the accuracy and precision of predictions for these upcoming neutrino experiments. In these short proceedings, we introduce a novel approach based on the quantum entropy associated with continuous distributions in QCD, using it to characterize the limits of factorization theorems relevant for the description of neutrino DIS. This work suggests an additional avenue for dissecting factorization-breaking dynamics through the quantum entropy, which could also play a role in quantum simulations of related systems.
Related papers
- Theoretical Developments in Lattice Gauge Theory for Applications in
Double-beta Decay Processes and Quantum Simulation [0.0]
Double beta decays are rare nuclear processes that can occur in two modes: two-neutrino double beta decay and neutrinoless double beta decay.
To draw reliable conclusions from their experimental constraints, it is necessary to have accurate predictions of the underlying hadronic interactions.
This thesis provides formal prescriptions for double beta decays using the finite volume effects in the lattice QCD framework.
arXiv Detail & Related papers (2023-11-29T18:27:23Z) - Generalised linear response theory for the full quantum work statistics [0.3277163122167433]
We study a quantum system driven out of equilibrium via a small Hamiltonian perturbation.
We find that all information about the distribution can be encoded in a single quantity.
arXiv Detail & Related papers (2023-07-04T19:06:50Z) - Soliton Confinement in a Quantum Circuit [0.0]
We analyze the confinement of sine-Gordon solitons into mesonic bound states in a one-dimensional quantum electronic circuit(QEC) array.
The interactions occurring naturally in the QEC array, due to tunneling of Cooper-pairs and pairs of Cooper-pairs, give rise to a non-integrable, interacting, lattice model of quantum rotors.
arXiv Detail & Related papers (2023-02-13T11:45:38Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - Directly Revealing Entanglement Dynamics through Quantum Correlation
Transfer Functions with Resultant Demonstration of the Mechanism of Many-Body
Localization [0.0]
This paper introduces the Quantum Correlation Transfer Function (QCTF) approach to entanglement dynamics in many-body quantum systems.
We show that QCTF can be fully characterized directly from the system's Hamiltonian, which circumvents the bottleneck of calculating the many-body system's time-evolution.
We also show that QCTF provides a new foundation to study the Eigenstate Thermalization Hypothesis (ETH)
arXiv Detail & Related papers (2022-01-26T22:50:04Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.