Achieving the quantum field theory limit in far-from-equilibrium quantum
link models
- URL: http://arxiv.org/abs/2112.04501v3
- Date: Wed, 14 Dec 2022 13:20:12 GMT
- Title: Achieving the quantum field theory limit in far-from-equilibrium quantum
link models
- Authors: Jad C. Halimeh, Maarten Van Damme, Torsten V. Zache, Debasish
Banerjee, Philipp Hauke
- Abstract summary: A fundamental question regarding quantum link model regularizations of lattice gauge theories is how faithfully they capture the quantum field theory limit of gauge theories.
Here, we show that the approach to this limit also lends itself to the far-from-equilibrium dynamics of lattice gauge theories.
Our results further affirm that state-of-the-art finite-size ultracold-atom and NISQ-device implementations of quantum link lattice gauge theories have the real potential to simulate their quantum field theory limit even in the far-from-equilibrium regime.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Realizations of gauge theories in setups of quantum synthetic matter open up
the possibility of probing salient exotic phenomena in condensed matter and
high-energy physics, along with potential applications in quantum information
and science technologies. In light of the impressive ongoing efforts to achieve
such realizations, a fundamental question regarding quantum link model
regularizations of lattice gauge theories is how faithfully they capture the
quantum field theory limit of gauge theories. Recent work [Zache, Van Damme,
Halimeh, Hauke, and Banerjee, at
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.L091502 has shown
through analytic derivations, exact diagonalization, and infinite matrix
product state calculations that the low-energy physics of $1+1$D
$\mathrm{U}(1)$ quantum link models approaches the quantum field theory limit
already at small link spin length $S$. Here, we show that the approach to this
limit also lends itself to the far-from-equilibrium quench dynamics of lattice
gauge theories, as demonstrated by our numerical simulations of the Loschmidt
return rate and the chiral condensate in infinite matrix product states, which
work directly in the thermodynamic limit. Similar to our findings in
equilibrium that show a distinct behavior between half-integer and integer link
spin lengths, we find that criticality emerging in the Loschmidt return rate is
fundamentally different between half-integer and integer spin quantum link
models in the regime of strong electric-field coupling. Our results further
affirm that state-of-the-art finite-size ultracold-atom and NISQ-device
implementations of quantum link lattice gauge theories have the real potential
to simulate their quantum field theory limit even in the far-from-equilibrium
regime.
Related papers
- Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Persisting quantum effects in the anisotropic Rabi model at thermal
equilibrium [0.0]
We study the long-lived quantum correlations and nonclassical states generated in the anisotropic Rabi model.
We demonstrate a stark distinction between virtual excitations produced beyond the strong coupling regime and the quantumness quantifiers once the light-matter interaction has been switched off.
arXiv Detail & Related papers (2023-09-05T10:59:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Toward Exploring Phase Diagrams of Gauge Theories on Quantum Computers
with Thermal Pure Quantum States [0.0]
We present an approach for quantum computing finite-temperature lattice gauge theories at non-zero density.
Our approach allows for sign-problem-free quantum computations of thermal expectation values and non-equal time correlation functions.
arXiv Detail & Related papers (2022-12-21T22:10:12Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Simulation of Chiral Phase Transitions [62.997667081978825]
We construct a quantum simulation for the $(+1)$ dimensional NJL model at finite temperature and finite chemical potential.
We observe consistency among digital quantum simulation, exact diagonalization, and analytical solution, indicating further applications of quantum computing in simulating QCD thermodynamics.
arXiv Detail & Related papers (2021-12-07T19:04:20Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Subdiffusive dynamics and critical quantum correlations in a
disorder-free localized Kitaev honeycomb model out of equilibrium [0.0]
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories.
In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics.
arXiv Detail & Related papers (2020-12-10T15:39:17Z) - Quantum Algorithms for Open Lattice Field Theory [0.0]
We develop non-Hermitian quantum circuits and explore their promise on a benchmark, the quantum one-dimensional Ising model with complex longitudinal magnetic field.
The development of attractors past critical points in the space of complex couplings indicates a potential for study on near-term noisy hardware.
arXiv Detail & Related papers (2020-12-09T19:00:18Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.