論文の概要: FvOR: Robust Joint Shape and Pose Optimization for Few-view Object
Reconstruction
- arxiv url: http://arxiv.org/abs/2205.07763v1
- Date: Mon, 16 May 2022 15:39:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-17 16:56:13.634416
- Title: FvOR: Robust Joint Shape and Pose Optimization for Few-view Object
Reconstruction
- Title(参考訳): FvOR:多視点オブジェクト再構成のためのロバストな関節形状とポース最適化
- Authors: Zhenpei Yang, Zhile Ren, Miguel Angel Bautista, Zaiwei Zhang, Qi Shan,
Qixing Huang
- Abstract要約: 数枚の画像から正確な3Dオブジェクトモデルを再構築することは、コンピュータビジョンにおいて難しい問題である。
FvORは、ノイズの多い入力ポーズを持つ数枚の画像から正確な3Dモデルを予測する学習ベースのオブジェクト再構成手法である。
- 参考スコア(独自算出の注目度): 37.81077373162092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing an accurate 3D object model from a few image observations
remains a challenging problem in computer vision. State-of-the-art approaches
typically assume accurate camera poses as input, which could be difficult to
obtain in realistic settings. In this paper, we present FvOR, a learning-based
object reconstruction method that predicts accurate 3D models given a few
images with noisy input poses. The core of our approach is a fast and robust
multi-view reconstruction algorithm to jointly refine 3D geometry and camera
pose estimation using learnable neural network modules. We provide a thorough
benchmark of state-of-the-art approaches for this problem on ShapeNet. Our
approach achieves best-in-class results. It is also two orders of magnitude
faster than the recent optimization-based approach IDR. Our code is released at
\url{https://github.com/zhenpeiyang/FvOR/}
- Abstract(参考訳): 数枚の画像から正確な3Dオブジェクトモデルを再構築することは、コンピュータビジョンにおいて難しい問題である。
最先端のアプローチは通常、正確なカメラのポーズを入力として想定するが、現実的な環境では入手が難しい。
本稿では,ノイズの多い入力ポーズを持つ数枚の画像から正確な3次元モデルを予測する学習型オブジェクト再構成手法FvORを提案する。
このアプローチの中核は,学習可能なニューラルネットワークモジュールを用いた3次元形状とカメラポーズ推定を共同で洗練する,高速でロバストなマルチビュー再構成アルゴリズムである。
この問題に対する最先端のアプローチをShapeNet上で徹底的にベンチマークする。
我々のアプローチはクラスで最高の結果を得る。
また、最近の最適化ベースのアプローチ IDR よりも2桁高速である。
我々のコードは \url{https://github.com/zhenpeiyang/FvOR/} でリリースされる。
関連論文リスト
- A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose [44.13819148680788]
カメラポーズを伴わないスパースビュー合成のための新しい構成と最適化手法を開発した。
具体的には、単分子深度と画素を3次元の世界に投影することで、解を構築する。
タンク・アンド・テンプル・アンド・スタティック・ハイクスのデータセットに3つの広い範囲のビューで結果を示す。
論文 参考訳(メタデータ) (2024-05-06T17:36:44Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
コンピュータビジョンにおける6次元カメラのポーズ推定問題に対処するため,iComMaという手法を提案する。
3次元ガウススプラッティング(3DGS)の反転による高精度カメラポーズ推定法を提案する。
論文 参考訳(メタデータ) (2023-12-14T15:31:33Z) - PF-LRM: Pose-Free Large Reconstruction Model for Joint Pose and Shape
Prediction [77.89935657608926]
画像から3Dオブジェクトを再構成するためのPF-LRM(Pose-Free Large Restruction Model)を提案する。
PF-LRMは1つのA100 GPU上で1.3秒で相対カメラのポーズを同時に推定する。
論文 参考訳(メタデータ) (2023-11-20T18:57:55Z) - Uncertainty-aware 3D Object-Level Mapping with Deep Shape Priors [15.34487368683311]
未知のオブジェクトに対して高品質なオブジェクトレベルマップを再構築するフレームワークを提案する。
提案手法では,複数のRGB-D画像を入力として,高密度な3次元形状と検出対象に対する9-DoFポーズを出力する。
2つの新たな損失関数を通して形状を伝播し不確実性を生じさせる確率的定式化を導出する。
論文 参考訳(メタデータ) (2023-09-17T00:48:19Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
本稿では,3次元シーン再構成のための新しいテスト時間最適化手法を提案する。
本手法は5つのゼロショットテストデータセット上で,最先端のクロスデータセット再構築を実現する。
論文 参考訳(メタデータ) (2023-08-10T17:55:02Z) - NOPE: Novel Object Pose Estimation from a Single Image [67.11073133072527]
本稿では,新しいオブジェクトの1つのイメージを入力として取り込んで,オブジェクトの3Dモデルに関する事前知識を必要とせずに,新しいイメージにおけるオブジェクトの相対的なポーズを予測するアプローチを提案する。
我々は、オブジェクトを取り巻く視点に対する識別的埋め込みを直接予測するモデルを訓練することで、これを実現する。
この予測は単純なU-Netアーキテクチャを用いて行われ、要求されたポーズに注意を向け、条件を定め、非常に高速な推論をもたらす。
論文 参考訳(メタデータ) (2023-03-23T18:55:43Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
1枚の画像から被写体の3次元表面を再構築することは難しい問題である。
本稿では,1枚の画像から3次元合成とオブジェクトポーズ推定を行う新しい手法を提案する。
提案手法は,複数の実世界のデータセットにまたがって,最先端の再構築性能を実現する。
論文 参考訳(メタデータ) (2023-02-24T20:37:27Z) - Few-View Object Reconstruction with Unknown Categories and Camera Poses [80.0820650171476]
この研究は、カメラのポーズやオブジェクトのカテゴリを知らない少数の画像から、一般的な現実世界のオブジェクトを再構築する。
私たちの研究の要点は、形状再構成とポーズ推定という、2つの基本的な3D視覚問題を解決することです。
提案手法は,各ビューから3次元特徴を予測し,それらを入力画像と組み合わせて活用し,クロスビュー対応を確立する。
論文 参考訳(メタデータ) (2022-12-08T18:59:02Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
既知の3DオブジェクトのセットとRGBまたはRGB-Dの入力画像から、各オブジェクトの6Dポーズを検出して推定する。
我々のアプローチは、ポーズと対応を緊密に結合した方法で反復的に洗練し、アウトレーヤを動的に除去して精度を向上させる。
論文 参考訳(メタデータ) (2022-04-26T18:00:08Z) - NeRF-Pose: A First-Reconstruct-Then-Regress Approach for
Weakly-supervised 6D Object Pose Estimation [44.42449011619408]
トレーニング中に2次元オブジェクトセグメンテーションと既知の相対カメラポーズしか必要としないNeRF-Poseという,弱教師付き再構築型パイプラインを提案する。
予測応答から安定かつ正確なポーズを推定するために、NeRF対応RAN+SACアルゴリズムを用いる。
LineMod-Occlusion 実験の結果,提案手法は6次元ポーズ推定法と比較して最先端の精度を持つことがわかった。
論文 参考訳(メタデータ) (2022-03-09T15:28:02Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。