論文の概要: Federated Anomaly Detection over Distributed Data Streams
- arxiv url: http://arxiv.org/abs/2205.07829v2
- Date: Tue, 17 May 2022 07:23:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-18 11:04:51.846770
- Title: Federated Anomaly Detection over Distributed Data Streams
- Title(参考訳): 分散データストリーム上のフェデレーション異常検出
- Authors: Paula Raissa Silva, Jo\~ao Vinagre, Jo\~ao Gama
- Abstract要約: 本稿では,異常検出,フェデレート学習,データストリーム間のブリッジ構築手法を提案する。
作業の包括的な目標は、分散データストリーム上でのフェデレーション環境での異常を検出することだ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sharing of telecommunication network data, for example, even at high
aggregation levels, is nowadays highly restricted due to privacy legislation
and regulations and other important ethical concerns. It leads to scattering
data across institutions, regions, and states, inhibiting the usage of AI
methods that could otherwise take advantage of data at scale. It creates the
need to build a platform to control such data, build models or perform
calculations. In this work, we propose an approach to building the bridge among
anomaly detection, federated learning, and data streams. The overarching goal
of the work is to detect anomalies in a federated environment over distributed
data streams. This work complements the state-of-the-art by adapting the data
stream algorithms in a federated learning setting for anomaly detection and by
delivering a robust framework and demonstrating the practical feasibility in a
real-world distributed deployment scenario.
- Abstract(参考訳): 通信ネットワークデータの共有は、例えば、ハイアグリゲーションレベルであっても、プライバシー法や規制、その他の重要な倫理上の懸念により、現在非常に制限されている。
これにより、組織、地域、州にまたがるデータを散乱させ、大規模にデータを利用するAIメソッドの使用を阻害する。
このようなデータを管理し、モデルを構築し、計算を行うプラットフォームを構築する必要がある。
本研究では,異常検出,フェデレーション学習,データストリーム間のブリッジ構築手法を提案する。
作業の包括的な目標は、分散データストリーム上でのフェデレーション環境での異常を検出することだ。
この研究は、異常検出のための連合学習環境にデータストリームアルゴリズムを適用し、堅牢なフレームワークを提供し、実世界の分散デプロイメントシナリオで実用性を示すことで、最先端のアルゴリズムを補完する。
関連論文リスト
- Enhanced Federated Anomaly Detection Through Autoencoders Using Summary Statistics-Based Thresholding [0.0]
フェデレートラーニング(FL)では、データの分散性のため、異常検出は難しい課題である。
本研究では,正規データと異常データの両方からの要約統計を利用した新しいフェデレーションしきい値計算手法を提案する。
提案手法は, クライアント間の局所的な要約統計データを集約し, 正常データから異常を最適に分離する大域しきい値を算出する。
論文 参考訳(メタデータ) (2024-10-11T22:21:14Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - Clustered Data Sharing for Non-IID Federated Learning over Wireless
Networks [39.80420645943706]
Federated Learning (FL)は、IoT(Internet of Things)のデータを活用する分散型機械学習アプローチである。
現在のFLアルゴリズムは、非独立で同一の分散データ(非IID)の課題に直面しており、通信コストが高く、モデルの精度が低下する。
本稿では,デバイス間通信(D2D)を通じて,クラスタヘッドから信頼性の高いアソシエイトへの部分的データ通信を行うクラスタデータ共有フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-17T07:11:02Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Scaling-up Distributed Processing of Data Streams for Machine Learning [10.581140430698103]
本稿では,計算・帯域幅制限方式における大規模分散最適化に着目した手法を最近開発した。
i)分散凸問題、(ii)分散主成分分析、(ii)グローバル収束を許容する幾何学的構造に関する非問題である。
論文 参考訳(メタデータ) (2020-05-18T16:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。