Harvesting mutual information from BTZ black hole spacetime
- URL: http://arxiv.org/abs/2205.07891v2
- Date: Thu, 21 Jul 2022 18:25:04 GMT
- Title: Harvesting mutual information from BTZ black hole spacetime
- Authors: Kendra Bueley, Luosi Huang, Kensuke Gallock-Yoshimura, Robert B. Mann
- Abstract summary: We investigate the correlation harvesting protocol for mutual information between two Unruh-DeWitt detectors in a static BTZ black hole spacetime.
We find that, unlike the entanglement harvesting scenario, harvested mutual information is zero only when a detector reaches an event horizon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the correlation harvesting protocol for mutual information
between two Unruh-DeWitt detectors in a static BTZ black hole spacetime. Here,
the effects coming from communication and change in proper separation of the
detectors are set to be negligible so that only a black hole affects the
extracted mutual information. We find that, unlike the entanglement harvesting
scenario, harvested mutual information is zero only when a detector reaches an
event horizon, and that although the Hawking effect and gravitational redshift
both affect the extraction of mutual information, it is extreme Hawking
radiation that inhibits the detectors from harvesting.
Related papers
- Singular Excitement Beyond the Horizon of a Rotating Black Hole [4.003194245289446]
We numerically compute the detector's transition rate for different values of black hole mass, black hole angular momentum, detector energy gap, and field boundary conditions at infinity.
Our results lead to a more generalized description of the behaviour of particle detectors in BTZ black hole spacetime.
arXiv Detail & Related papers (2024-07-01T18:00:01Z) - Evaluating radiation impact on transmon qubits in above and underground facilities [52.89046593457984]
We compare the response of a transmon qubit measured initially at the Fermilab SQMS above-ground facilities and then at the deep underground Gran Sasso Laboratory (INFN-LNGS, Italy)
Results indicate that qubits respond to a strong gamma source and it is possible to detect particle impacts.
arXiv Detail & Related papers (2024-05-28T16:54:45Z) - More Excitement Across the Horizon [0.0]
We show that a similar phenomenon is present in the transition rate of a detector falling radially into a black hole.
Our results suggest that the effect is robust, motivating a search for a similar effect in other black hole spacetimes.
arXiv Detail & Related papers (2024-02-22T19:00:01Z) - Gravitational orbits, double-twist mirage, and many-body scars [77.34726150561087]
We explore the implications of stable gravitational orbits around an AdS black hole for the boundary conformal field theory.
The orbits are long-lived states that eventually decay due to gravitational radiation and tunneling.
arXiv Detail & Related papers (2022-04-20T19:18:05Z) - Entanglement Harvesting with a Twist [0.0]
We investigate entanglement outside of an $mathbbRP$ geon by considering the entanglement structure of the vacuum state of a quantum field in this spacetime.
We find that detectors with a small energy gap harvest more entanglement in the BTZ spacetime.
As the energy gap increases, the detectors harvest more entanglement in a geon spacetime.
arXiv Detail & Related papers (2022-01-26T19:00:00Z) - Six-point functions and collisions in the black hole interior [71.67770216265583]
We consider two signals sent from the boundaries into the black hole interior shared between the two regions.
We compute three different out-of-time-order six-point functions to quantify various properties of the collision.
arXiv Detail & Related papers (2021-05-26T18:01:23Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Harvesting Entanglement with Detectors Freely Falling into a Black Hole [0.0]
We consider two pointlike Unruh-DeWitt (UDW) detectors in different combinations of free-falling and static trajectories.
We show that the previously known entanglement shadow' near the horizon is indeed absent for the case of two free-falling-detectors.
arXiv Detail & Related papers (2021-02-18T19:00:03Z) - Entanglement Amplification from Rotating Black Holes [0.0]
We study entanglement harvesting in the presence of a rotating BTZ black hole.
We find that rotation can significantly amplify the harvested vacuum entanglement.
We also find that the entanglement shadow -- a region near the black hole from which entanglement cannot be extracted -- is diminished in size as the black hole's angular momentum increases.
arXiv Detail & Related papers (2020-10-27T18:00:01Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Decoherence as Detector of the Unruh Effect [58.720142291102135]
We propose a new type of the Unruh-DeWitt detector which measures the decoherence of the reduced density matrix of the detector interacting with the massless quantum scalar field.
We find that the decoherence decay rates are different in the inertial and accelerated reference frames.
arXiv Detail & Related papers (2020-03-10T21:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.